Archimedes of Syracuse
Категория реферата: Топики по английскому языку
Теги реферата: шпоры, доклад по обж
Добавил(а) на сайт: Мартьян.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
The treatise On plane equilibriums sets out the fundamental principles of mechanics, using the methods of geometry. Archimedes discovered fundamental theorems concerning the centre of gravity of plane figures and these are given in this work. In particular he finds, in book 1, the centre of gravity of a parallelogram, a triangle, and a trapezium. Book two is devoted entirely to finding the centre of gravity of a segment of a parabola. In the Quadrature of the parabola Archimedes finds the area of a segment of a parabola cut off by any chord.
In the first book of On the sphere and cylinder Archimedes shows that the surface of a sphere is four times that of a great circle, he finds the area of any segment of a sphere, he shows that the volume of a sphere is two-thirds the volume of a circumscribed cylinder, and that the surface of a sphere is two-thirds the surface of a circumscribed cylinder including its bases. A good discussion of how Archimedes may have been led to some of these results using infinitesimals is given in . In the second book of this work Archimedes' most important result is to show how to cut a given sphere by a plane so that the ratio of the volumes of the two segments has a prescribed ratio.
In On spirals Archimedes defines a spiral, he gives fundamental properties connecting the length of the radius vector with the angles through which it has revolved. He gives results on tangents to the spiral as well as finding the area of portions of the spiral. In the work On conoids and spheroids Archimedes examines paraboloids of revolution, hyperboloids of revolution, and spheroids obtained by rotating an ellipse either about its major axis or about its minor axis. The main purpose of the work is to investigate the volume of segments of these three-dimensional figures. Some claim there is a lack of rigour in certain of the results of this work but the interesting discussion in attributes this to a modern day reconstruction.
On floating bodies is a work in which Archimedes lays down the basic principles of hydrostatics. His most famous theorem which gives the weight of a body immersed in a liquid, called Archimedes' principle, is contained in this work. He also studied the stability of various floating bodies of different shapes and different specific gravities. In Measurement of the Circle Archimedes shows that the exact value of p lies between the values 310/71 and 31/7. This he obtained by circumscribing and inscribing a circle with regular polygons having 96 sides.
The Sandreckoner is a remarkable work in which Archimedes proposes a number system capable of expressing numbers up to 8x1016 in modern notation. He argues in this work that this number is large enough to count the number of grains of sand which could be fitted into the universe. There are also important historical remarks in this work, for Archimedes has to give the dimensions of the universe to be able to count the number of grains of sand which it could contain. He states that Aristarchus has proposed a system with the sun at the centre and the planets, including the Earth, revolving round it. In quoting results on the dimensions he states results due to Eudoxus, Phidias (his father), and to Aristarchus. There are other sources which mention Archimedes' work on distances to the heavenly bodies. For example in Osborne reconstructs and discusses:-
...a theory of the distances of the heavenly bodies ascribed to Archimedes, but the corrupt state of the numerals in the sole surviving manuscript [due to Hippolytus of Rome, about 220 AD] means that the material is difficult to handle.
In the Method, Archimedes described the way in which he discovered many of his geometrical results (see):-
... certain things first became clear to me by a mechanical method, although they had to be proved by geometry afterwards because their investigation by the said method did not furnish an actual proof. But it is of course easier, when we have previously acquired, by the method, some knowledge of the questions, to supply the proof than it is to find it without any previous knowledge.
Perhaps the brilliance of Archimedes' geometrical results is best summed up by Plutarch, who writes:-
It is not possible to find in all geometry more difficult and intricate questions, or more simple and lucid explanations. Some ascribe this to his natural genius; while others think that incredible effort and toil produced these, to all appearances, easy and unlaboured results. No amount of investigation of yours would succeed in attaining the proof, and yet, once seen, you immediately believe you would have discovered it; by so smooth and so rapid a path he leads you to the conclusion required.
Heath adds his opinion of the quality of Archimedes' work:-
The treatises are, without exception, monuments of mathematical exposition; the gradual revelation of the plan of attack, the masterly ordering of the propositions, the stern elimination of everything not immediately relevant to the purpose, the finish of the whole, are so impressive in their perfection as to create a feeling akin to awe in the mind of the reader.
There are references to other works of Archimedes which are now lost. Pappus refers to a work by Archimedes on semi-regular polyhedra, Archimedes himself refers to a work on the number system which he proposed in the Sandreckoner, Pappus mentions a treatise On balances and levers, and Theon mentions a treatise by Archimedes about mirrors. Evidence for further lost works are discussed in but the evidence is not totally convincing.
Archimedes was killed in 212 BC during the capture of Syracuse by the Romans in the Second Punic War after all his efforts to keep the Romans at bay with his machines of war had failed. Plutarch recounts three versions of the story of his killing which had come down to him. The first version:-
Archimedes ... was ..., as fate would have it, intent upon working out some problem by a diagram, and having fixed his mind alike and his eyes upon the subject of his speculation, he never noticed the incursion of the Romans, nor that the city was taken. In this transport of study and contemplation, a soldier, unexpectedly coming up to him, commanded him to follow to Marcellus; which he declining to do before he had worked out his problem to a demonstration, the soldier, enraged, drew his sword and ran him through.
The second version:-
... a Roman soldier, running upon him with a drawn sword, offered to kill him; and that Archimedes, looking back, earnestly besought him to hold his hand a little while, that he might not leave what he was then at work upon inconclusive and imperfect; but the soldier, nothing moved by his entreaty, instantly killed him.
Finally, the third version that Plutarch had heard:-
... as Archimedes was carrying to Marcellus mathematical instruments, dials, spheres, and angles, by which the magnitude of the sun might be measured to the sight, some soldiers seeing him, and thinking that he carried gold in a vessel, slew him.
Archimedes considered his most significant accomplishments were those concerning a cylinder circumscribing a sphere, and he asked for a representation of this together with his result on the ratio of the two, to be inscribed on his tomb. Cicero was in Sicily in 75 BC and he writes how he searched for Archimedes tomb (see for example):-
... and found it enclosed all around and covered with brambles and thickets; for I remembered certain doggerel lines inscribed, as I had heard, upon his tomb, which stated that a sphere along with a cylinder had been put on top of his grave. Accordingly, after taking a good look all around ..., I noticed a small column arising a little above the bushes, on which there was a figure of a sphere and a cylinder... . Slaves were sent in with sickles ... and when a passage to the place was opened we approached the pedestal in front of us; the epigram was traceable with about half of the lines legible, as the latter portion was worn away.
It is perhaps surprising that the mathematical works of Archimedes were relatively little known immediately after his death. As Clagett writes in:-
Unlike the Elements of Euclid, the works of Archimedes were not widely known in antiquity. ... It is true that ... individual works of Archimedes were obviously studied at Alexandria, since Archimedes was often quoted by three eminent mathematicians of Alexandria: Heron, Pappus and Theon.
Only after Eutocius brought out editions of some of Archimedes works, with commentaries, in the sixth century AD were the remarkable treatises to become more widely known. Finally, it is worth remarking that the test used today to determine how close to the original text the various versions of his treatises of Archimedes are, is to determine whether they have retained Archimedes' Dorian dialect.
J J O'Connor and E F Robertson
Рекомендуем скачать другие рефераты по теме: рассказы, сообщение, курсовые работы бесплатно.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата