Интегралы, дифуры, матрицы
Категория реферата: Топики по английскому языку
Теги реферата: цель курсовой работы, доклад по обж
Добавил(а) на сайт: Balakin.
Предыдущая страница реферата | 1 2 3 4 5
Теорема: Якщо ф-ія f(x;y) неперервна в області D, а ф-ії x=j(u;v), y=y(u;v) диференційовні і встановлюють взаємно-однозначну в системі Ouv, і при цьому їхній якобіан зберігає незмінним свій знак в області D, то має місце формула:
6. Поняття криволінійних інтегралів першого та другого роду
Криволінійний інтеграл першого роду
Означення:
називається криволінійним інтегралом першого роду, якщо ця границя існує і не залежить ні від способу розбиття дуги L на елементарні дуги, ні від вибору на них точок Mi.
Враховуючи формулу обчислення дуги кривої, цей інтеграл можна обчислити за такою формулою:
В тривимірному випадку для ф-ії u=f(x;y;z), коли дуга кривої L задана параметричними рівняннями x=x(t), y=y(t), z=z(t), a £ t £ b. Формула має вигляд:
Зауваження: Криволінійний інтеграл першого роду не залежить від напряму шляху інтегрування.
Криволінійний інтеграл першого роду
Якщо P(x;y) та Q(x;y) – неперервні ф-ії, а y=j(x) – рівняння дуги гладкої кривої L, яка пробігається при зміні х від а до b, то криволінійний інтеграл другого роду має такий вигляд:
Криволінійний інтеграл другого роду змінює свій знак на протилежний при зміні напряму шляху інтегрування (тобто обходу дуги кривої L).
Криволінійний інтеграл другого роду можна розглядати як інтеграл від вектор-функції по диференціалу радіус-векторадуги кривої лінії L, тобто:
ФУНКЦІЇ БАГАТЬОХ ЗМІННИХ
Основні поняття
1. Множини точок на площині та в n-вимірному просторі.
Множина точок називається зв'язною, якзо будь-які її дві точки можна з'єднати ламаною лінією так, щоб всі точки цієї лінії належали цій множині.
Множина точок називається обмеженою, якщо її точки належать множині точок круга скінченного радіуса.
Множина точок, координати яких задовольняють нерівність (x1-x10)2+(x2-x20)2+…+(xn-xn0)20 таке, що при виконанні нерівності 0
Скачали данный реферат: Flavij, Завражин, Гагарин, Карпенцев, Гришко, Паршиков, Praskov'ja, Галатея.
Последние просмотренные рефераты на тему: бесплатные контрольные, ценности реферат, бизнес реферат, диплом на тему.
Предыдущая страница реферата | 1 2 3 4 5