История развития компьютеров (Silicon Valley, its history the best companies)
Категория реферата: Топики по английскому языку
Теги реферата: егэ ответы, найти реферат
Добавил(а) на сайт: Vasil'evyh.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
Importance of military funding
Before switching over to the events at Intel, the aspect of military
funding is to be dealt with, since it has played an important role in the
early days of Silicon Valley.
During World War II, after the Japanese attack at Pearl Harbor in 1942, a
great deal of the U.S. military forces and of the military production was
moved to California. Within a few years, California - formerly an
agricultural state - became a booming industrial state and the military
center of the USA.)
After the war, in the time of the Cold War and the arms race, the Korean
conflict, the "missile gap" and the space program, the Pentagon kept
ordering high-technology products from the armament factories in
California. Many companies established R&D departments and production
facilities in Santa Clara County near Stanford University, which provided
them with bright engineers and scientists, and were largely supported by
the Pentagon's demand for electronic high-tech products.
Examples for such firms are FMC, GTE, Varian Associates, Westinghouse, and
finally Lockheed, which opened its R&D department in the Stanford Research
Park in 1956, and started Lockheed Missiles and Space Company (LMSC) in
Sunnyvale. Lockheed's move to Northern California was crucial for the
developments in Santa Clara County; today the company is Silicon Valley's
largest employer with more than 24,000 people.)
Military funding for high-tech products was responsible for the early
growth of Silicon Valley in the 1950s and 1960s. The U.S. Department of
Defense was the biggest buyer of these products, e.g. its purchases
represented about 70 percent of the total production of ICs in 1965.)
While this share in chip demands has dropped to 8 percent today, the
Pentagon remains the biggest supporter of new technologies and accounts for
most of the purchases of the latest developments.
Intel Corp.
After the transistor and the integrated circuit, the invention of the
microprocessor in the early 1970s represents the next step towards the
modern way of computing, providing the basis for the subsequent personal
computer revolution.
It was at Intel where the first microprocessor was designed - representing
the key to modern personal computers. With its logic and memory chips, the
company provides the basic components for microcomputers. Intel is regarded
as Silicon Valley's flagship and its most successful semiconductor company, owing its worldwide leading role to a perpetually high spending on research
and development (R&D).
Foundation in 1968
It all started in 1968, when Bob Noyce resigned as head of Fairchild
Semiconductor taking along Gordon Moore and Andy Grove, to embark on a new
venture. They had decided to leave the company, because they wanted "to
regain the satisfaction of research and development in a small, growing
company,") since Fairchild had become big with lots of bureaucracy work to
be done. Gordon Moore had belonged to the famous Shockley Eight and was in
charge of the R&D team at Fairchild. Andy Grove, a young Hungarian йmigrй, who had earned a doctorate in chemical engineering at U.C. Berkeley, had
joined Fairchild in the early 1960s.
Intel (short for Integrated Electronics), a typical Fairchild spin-off, was
financially backed by venture capital from Arthur Rock, who had been in
contact with Noyce since 1957. The company was founded upon the idea of
integrating many transistors on a chip of silicon, after Noyce had
developed a new photochemical process. The three engineers initially
focused on building the first semiconductor chips used for computer memory, which should replace the dominant memory storage technology at the time, called "magnetic core". Intel's task was to drive down the cost per bit by
increasing the capacity of memory chips dramatically.
First products - Moore's Law
Within a year, Intel developed its first product - the 3101 Schottky
bipolar 64-bit static random access memory (SRAM), which was followed soon
after by the 1101. This chip (1101) was a 256-bit SRAM and had been
developed on Intel's new "silicon gate metal -oxide semiconductor (MOS)
process," which should become the "industry's process technology of
choice.") With the first two products, the young company started with 12
employees and net revenues of $2,672 in 1968, had already gained the
technological lead in the field of memory chips.
Intel's first really successful product was the 1103 dynamic random access
memory (DRAM), which was manufactured in the MOS process. Introduced in
1970, this chip was the "first merchant market LSI (large-scale integrated)
DRAM," and received broad acceptance because it was superior to magnetic
core memories. So, by the end of 1971, the 1103 became "the world's largest-
selling semiconductor device" and provided the capital for Intel's early
growth.)
Until today, semiconductors have "adhered to Moore's Law," which has been
framed by the "cofounder of Fairchild and Intel" when the first commercial
DRAMs appeared in the early 1970s. This law predicts that the price per bit
(the smallest unit of memory) drops by 30 percent every year. It implies
that you will receive 30 percent more power (speed/capacity) at the same
price, or that the "price of a certain power is 30 percent less.")
Moore's Law applies to both memory chips and microprocessors, and shows the
unprecedented rapid progress in microelectronics. This "astonishing ratio"
has never occurred in "the history of manufacturing" before. Applied to
automobiles, it means that "a Cadillac would have a top speed of 500 miles
per hour, get two hundred miles to a gallon of gas and cost less than a
dollar" - almost incredible.)
1971 was a crucial year at Intel. The company's revenues surpassed
operating expenses for the first time, and the company went public, raising
$6.8 million.
Moreover, the company introduced a new memory chip - the first erasable, programmable read only memory (EPROM). Invented by Intel's Dov Frohman, the
new memory could store data permanently like already existing ROMs, but
besides could be erased simply by a beam of ultraviolet light and be used
again. The EPROM was initially viewed as a "prototyping device" for R&D.
The invention of the microprocessor in the same year, however, showed the
real significance of the EPROM, which could be used by original equipment
manufacturer (OEM) customers (they build the end-products) to store
microprocessor programs in a "flexible and low-cost way." The "unexpected
synergy" between the EPROM and the microprocessor resulted in a growing
market for both chips and contributed a great deal to Intel's early
success.)
"Ted" Hoff's first microprocessor
The invention of the microprocessor marked a turning point in Intel's
history. This development "changed not only the future of the company, but
much of the industrial world.")
The story to this technological breakthrough began in 1969, when a Japanese
calculator manufacturer called Busicomp asked Intel to design a set of
chips for a family of programmable calculators. Marcian "Ted" Hoff, a young
and "very bright ex-Stanford research associate") who had joined Intel as
employee number 12, was charged with this project. However, he did not like
the Japanese design calling for 12 custom chips - each of them was assigned
a distinct task. Hoff thought designing so many different chip s would make
the calculators as expensive as minicomputers such as DEC's PDP-8, although
they could merely be used for calculation. His idea was to develop a four-
chip set with a general-purpose logic device as its center, which could be
programmed by inst ructions stored on a semiconductor memory chip. This was
the theory behind the first microprocessor.
With the help of new employee Stan Mazor, Hoff perfected the design of what
would be the 4004 arithmetic chip. After Busicomp had accepted Hoff's chip
set, Frederico Faggin, one of the best chip design experts, who had been
hired recently, began transforming the design into silicon. The 4004
microprocessor, a 4-bit chip (processes 4 bits - a string of four ones or
zeroes - of information at a time), contained 2300 MOS transistors, and was
as powerful as the legendary first electronic computer, ENIAC.
Soon after the first 4004s had been delivered to Busicomp, Intel realized
the market potential of the chip, and successfully renegotiated with the
Japanese to regain the exclusive rights, which had been sold to Busicomp.
In November 1971, Intel introduced the 4004 to the public in an Electronic
News ad. It announced not just a new product, but "a new era of integrated
electronics [...], a micro programmable computer on a chip.") The
microprocessor is - as Gordon Moore call s it - "one of the most
revolutionary products in the history of mankind,") and ranks as one of 12
milestones of American technology in a survey of U.S. News and World Report
in 1982. This chip is the actual computer itself: It is the central
processing u nit (CPU) - the computer's brains. The microprocessor made
possible the microcomputer, which is "as big as it is only to accommodate
us." For "we'd have a hard time getting information into or out of a
microprocessor without a keyboard, a printer and a terminal," as Th.Mahon
puts it.)
However significant Hoff's invention, nevertheless, it was hardly noticed
in the public until early 1973. The microprocessor had its own instruction
set and was to be programmed in order to execute specific tasks. So Ted
Hoff had to inform the public and t he engineers about the capabilities of
the new device and how to program it.
Cooperation with IBM in the 1980s
Intel's measures in the late 1970s as a reaction to increasing competition
from other chip manufacturers paid off greatly and resulted in a remarkable
technological lead against its competitors. The most significant
consequence, which was a landmark in the company's development, was IBM's
decision to rely on the Intel 8088 microprocessor for its PCs in 1980.
IBM (short for International Business Machines) has been the world's
leading company in the big mainframe computers since the 1950s. Due to its
dominance, it was often compared with a giant and referred to as "Big
Blue." Surprisingly, it was not before 198 1 (the PC revolution had already
been on for a few years) that IBM introduced its own Personal Computer.
Because of IBM's dominance and worldwide reputation, its PCs soon became
industry standard and penetrated the office market: other established
computer companies followed and introduced their own PCs - the so-called
"clones" - which were compatible to IBM' s models. To maintain
compatibility, all these manufacturers were forced to rely on Intel's
microprocessors, which thus were bootstrapped to industry standard, too.
As well as for Intel, the CPU manufacturer, IBM's decision has been crucial
for a company in the software field: Microsoft's (Redmond, Washington) MS-
DOS was chosen as the IBM PC's operating system and became industry
standard. It is essential to every IBM compatible PC. Microsoft, a small
company in 1980, grew explosively, and is today's superior software giant.
At the beginning of the 1980s, IBM was concerned about Intel's ability to
keep investing in R&D and therefore decided to support Intel by buying $250
million (=12%) of the company's stock. This endorsed Intel's position, and, in 1987, IBM sold the last of its shares in a strong Intel.
Intel today
Annual report 2000
[pic][pic][pic]
[pic][pic][pic]
[pic][pic][pic]
[pic][pic][pic]
Today, Intel supplies the computing and communications industries with
chips, boards and systems building blocks that are the "ingredients" of
computers, servers, and networking and communications products. Industry
members to create advanced computing and communications systems use these
products. Intel's mission is to be the preeminent building block supplier
to the worldwide Internet economy.
[pic]
Intel® Architecture platform products[pic] Microprocessors, also called
central processing units (CPUs) or chips, are frequently described as the
"brains" of a computer, because they control the central processing of data
in personal computers (PCs), servers, workstations and other computers.
Intel offers microprocessors optimized for each segment of the computing
market:
Intel® Pentium® III Xeon™ processors for mid-range to high-end servers and
workstations
Intel® Pentium® 4 and Pentium® III processors for entry-level servers and
workstations and performance desktop PCs
Intel® Celeron™ processors for value PC systems
Mobile Pentium® III processors for performance in mobile PC systems
Chipsets perform essential logic functions surrounding the CPU in
computers, and support and extend the graphics, video and other
capabilities of many Intel processor-based systems.
Motherboards combine Intel microprocessors and chipsets to form the basic
subsystem of a PC or server.
e-Business solutions enable services and channel programs to accelerate
integration and deployment of Intel Architecture-based systems and
products.
[pic]Wireless communications and computing products[pic] These products are
component-level hardware and software focusing on digital cellular
communications and other applications needing both low-power processing and
high performance. These products are used in mobile phones, handheld
devices, two-way pagers and many other products. For these markets, Intel
offers Intel® Flash memory, application processors based on the Intel®
StrongARM processor core, and base band chipsets for cellular phones and
other wireless devices.
Networking and communications products[pic] Communications building blocks
for next-generation networks and Internet data centers are offered at
various levels of integration. These products are used in communications
servers, network appliances and computer telephony integration equipment.
Component-level building blocks include communications silicon such as
network processors and other board-level components, software and embedded
control chips. These products are integrated in communications hardware
such as hubs, routers, switches and servers for local and wide area
networking applications. Embedded control chips are also used in laser
printers, imaging, automotive systems and other applications.
New business products[pic] These products and services include e-Commerce
data center services as well as connected peripherals.
[pic]
Intel's major customers include:
Original equipment manufacturers[pic] (OEMs) of computer systems, cellular
phone and handheld computing devices, telecommunications and networking
communications equipment, and peripherals.
Users of PC and network communications products[pic] including individuals, large and small businesses, and Internet service providers—who buy Intel's
PC enhancements, business communications products and networking products
through reseller, retail, e-Business and OEM channels.
Other manufacturers[pic] including makers of a wide range of industrial and
communications equipment.
The emergence of the PC industry
Until the early 1970s, computers were huge machines - from the largest
ones, the supercomputers, to mainframes and minicomputers - and were mainly
used for scientific research in universities and in military institutions, and for business calculations in major companies. Surprisingly, when the
first microprocessors appeared, none of the established companies such as
IBM, DEC or HP had the idea to build small, personal computers. They just
did not see any market for them and could not imagine what those machines
should be needed for. None of these large companies anticipated the
possibilities of PCs, which are today used in almost every office, in the
home, in the school, on airplanes, etc. and can act as typewriters, calculators, accounting systems, telecommunications instruments, libraries, tutors, toys and many the like.
So, it was the hobbyists, single electronics wizards who liked tinkering
with electronic devices that constructed their own computers as the first
PCs. These "computer nuts" ignited the "fire in the valley;") they launched
the personal computer revolution in Silicon Valley "out of their own
fascination with the technology. The personal computer arose from a spirit
of sharing "hard-won technical information" with other computer freaks who
developed their devices for the fun of tinkering around in this fascinating
field of electronics. Some of these frequently young hobbyists found
themselves almost overnight as millionaires, after they had sold their
devices in a newly founded firm.
Before dealing with the story of Apple, which is typical of Silicon Valley
and responsible for the breakthrough of the personal computer, some
information about the first PC and the emergence of the PC industry shall
be given.
Altair - the first PC
Altair is often regarded as the first personal computer, although it was
one of those switches and lights computers - programming is done by
arranging a set of switches in a special order, and the results appear as
different combinations of lights. In other words, such a machine is a
genuine computer, but absolutely useless, as Steve Wozniak, one of the PC
pioneers, put it.)
After the first microprocessors had come onto the market, Ed Roberts, an
engineer at MITS, a small calculator company in Texas, decided to build a
kit computer, which he intended to sell to hobbyists. He chose Intel's 8080
as the CPU for his computer, since this chip was the most advanced and
powerful at the time. As Roberts wanted to sell his computer for less than
$500 and the official price for the 8080 was already at $360, he contacted
Intel and could finally receive the chip for only $75 apiece.
By the end of 1974, Roberts finished his computer, which was named Altair.
When the Altair was introduced on the cover of the January 1975 issue of
Popular Electronics as the first personal computer, which would go for $397
only, the market response was in credible. The low price was the actual
sensation, because it was largely known that the price for the Intel 8080
CPU powering the Altair was already at $360. So many hobbyists, engineers
and programmers who had keenly waited for their own personal computer, which they could experiment on at home, welcomed the new product and
ordered "their" Altair on the spot.
Roberts had never expected such a great response and his small firm was
flooded by those immediate orders (more than 4000). He boosted up the
production, but still could not meet the huge demand. The Altair was a
success at first, and Roberts sold many of them.
However, he had increased production at the expense of quality and further
refinement of his computer, so the Altair brought along a lot of trouble
and was finally supplanted by other computers, which were superior.
Nevertheless, the Altair as the first successful microcomputer, contributed
a lot to the PC revolution, since it encouraged other people to build
personal computers (e.g. IMSAI, Apple).
The first computer shops
Рекомендуем скачать другие рефераты по теме: баллов, bestreferat ru, контрольная работа по математике класс.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата