Архимед (Arhimedes)
Категория реферата: Биографии
Теги реферата: реферат образ жизни, диплом формирование
Добавил(а) на сайт: Ljutenkov.
1 2 3 | Следующая страница реферата
Архимед (Arhimedes)
Биография
«Великий сиракузец»
Архимед (ок. 287-212 гг. до н. э.) родился в городе Сиракузы на острове Сицилия. Его отец, Фидий, был математиком и астрономом. Видимо, отец оказал влияние на научные интересы Архимеда еще в детстве.
Для более глубокого изучения наук Архимед отправляется в Египет, в Александрию. В те времена Александрия была культурным центром античного мира. Там был организован Мусейон, сообщество ученых, которые посвятили себя научным исследованиям и получали от царя плату за свои занятия. Они изучали четыре дисциплины - литературу, математику, астрономию и медицину. Ученые пользовались огромной по тому времени библиотекой, имевшей около 700000 книг.
После жизни в Александрии Архимед возвращается на родину в Сиракузы. Может быть, причиной уехать было то, что в Александрии царили лесть, заискивание, желание нравиться правителям Египта. А может быть в большей степени то, что Архимед не мог разделить модных в те времена воззрений на механику как на "ремесленный навык", достойный раба. А ведь механика все более влекла его к себе. Но связи с Александрийской школой он не прерывал.
Большинство его работ написано в виде писем к его друзьям (Эраcтофену , Конону, Досифею). Домой, в Сиракузы, он привез богатый опыт научных исследований в различных областях: математика, физика, астрономия, продолжил заниматься и делать открытия в инженерном деле. В Сиракузах он живет без забот, он окружен почетом, вниманием и не нуждается в средствах. Впрочем, он мало думает о своем бытии, увлеченный вычислениями и изобретательством.
Легенды рассказывают, что Архимед забывал о пище, подолгу не бывал в бане и готов был чертить везде: в пыли, пепле, на песке, даже на собственном теле. Однажды, в ванне, его вдруг осенила мысль о выталкивающей силе, действующей на погруженное в жидкость тело и, забыв обо всем, голый, бежал он по улицам Сиракуз с победным кличем: "Эврика!" ("Я нашел!"). Его мало заботит людская молва. Некоторые свои озарения он даже не считает нужным записывать.
Архимед - автор многочисленных открытий, гениальный изобретатель, известный во всем греческом мире благодаря конструкции многих механизмов: машины для орошения полей, водоподъемного механизма, системы рычагов, блоков для поднятия больших тяжестей (кранов), военных метательных аппаратов. Он соорудил систему блоков, с помощью которой один человек смог спустить на воду огромный корабль "Сиракосия". Крылатыми стали произнесенные тогда слова Архимеда: "Дайте мне точку опоры, и я поверну Землю".
Инженерный гений Архимеда с особой силой проявился при осаде Сиракуз. Воины римского консула Марцелла были надолго задержаны у стен города невиданными машинами: мощные катапульты прицельно стреляли каменными глыбами в бойницах были установлены метательные машины, выбрасывающие грады ядер, береговые краны поворачивались за пределы стен и забрасывали корабли противника каменными и свинцовыми глыбами, крючья подхватывали корабли и бросали их вниз с большой высоты, системы вогнутых зеркал поджигали корабли. Историк Плутарх описывает ужас, царивший в рядах римских воинов. Он утверждал, что Архимед "один был душой обороны, приводил все в движение и управлял защитой". Но мы не знаем конструкции его боевых машин, мы можем судить о них только по работам Плутарха и других историков.
Архимед именно о тех своих открытиях, благодаря которым приобрел славу, не оставил ни одного сочинения. Древний Рим так и не узнал всех секретов машин Архимеда и единственным трофеем Марцелла, украшением его дома стала знаменитая "сфера" Архимеда - небесный глобус, модель небесных светил. Архимед погиб от меча римского легионера. Он был поглощен работой и не заметил, что город уже занят римлянами. Когда посыльный солдат явился к нему и потребовал, чтобы он немедленно явился к Марцеллу, Архимед поморщился, лениво, как от надоедливой мухи, отмахнулся от него и, не поднимая глаз от чертежа, пробурчал: "Не мешай, я вычисляю". Солдат выхватил меч и убил его.
На своей могильной плите Архимед завещал выгравировать шар и цилиндр - символы его геометрических открытий. Могила заросла травой и место это было забыто очень скоро. Лишь через 137 лет после его смерти Цицерон разыскал в Сиракузах этот могильный камень, на котором были уже стерты временем часть знаков. А потом могила опять затерялась, уже навсегда.
Достижения в математике
Задача о трисекции угла.
Задача о делении угла на три равные части возникла из потребностей архитектуры и строительной техники. При составлении рабочих чертежей, разного рода украшений, многогранных колоннад, при строительстве, внутренней и внешней отделки храмов, надгробных памятников древние инженеры, художники встретились с необходимостью уметь делить окружность на три равные части, а это часто вызывало затруднения. Оригинальное и вместе с тем чрезвычайно простое решение задачи о трисекции угла дал Архимед.
Измерение круга.
Задача о квадратуре круга заключается в следующем: построить квадрат, площадь которого была бы равна площади данного круга. Большой вклад в решение этой задачи внес Архимед. В своем трактате "Измерение круга" он доказывает следующие три теоремы:
Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.
Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.
Теорема третья: C-3d < d и C-3d > d, где С -длина окружности, а d-ее диаметр. Откуда, d < C-3d < d. Верхнюю и нижнюю границы для числа Архимед получил путем последовательного рассмотрения отношений периметров к диаметру правильных описанных и вписанных в круг многоугольников, начиная с шестиугольника и кончая 96-угольником. Если приравнять верхней границе, то получим архимедово значение (архимедово число).
Спираль Архимеда.
Архимедова спираль плоская трансцендентная кривая. Архимедова спираль описывается точкой M, движущейся равномерно по прямой d, которая вращается вокруг точки O, принадлежащей этой прямой. В начальный момент движения M совпадает с центром вращения O прямой.
Инфинитезимальные методы.
В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы. Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется (приближается) описанными и вписанными телами, объемы которых можно вычислить. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой.
Дифференциальным методом Архимед находил касательную к спирали.
Области интересов
Физика
Оптика.
Свои оптические теории Архимед строил на основе аксиом. Одной из таких аксиом являлась обратимость хода луча - глаз и объект наблюдения можно поменять местами. Весь же круг вопросов геометрической оптики -"катоптрики" был очень широк. Архимед занимался следующими проблемами: почему в плоских зеркалах предметы сохраняют свою натуральную величину, в выпуклых - уменьшаются, а в вогнутых - увеличиваются, почему левые части предметов видны справа и наоборот, когда изображение в зеркале исчезает и когда появляется, почему вогнутые зеркала, будучи поставлены против Солнца, зажигают поднесенный к ним трут, почему в небе видна радуга, почему иногда кажется, что на небе два одинаковых Солнца. С "катоптрикой" связана легенда о поджоге Архимедом римских кораблей во время осады Сиракуз.
Введение понятия центра тяжести.
Архимед первым ввел понятие центра тяжести в механике. Он заменяет тела их теоретическими моделями. Определение центра тяжести формулируется так: "...центром тяжести произвольного тела является некоторая точка, расположенная внутри него, обладающая тем свойством, что если за нее мысленно подвесить тяжелое тело, то оно останется в покое и сохранит первоначальное положение." Понятие центра тяжести в дальнейшем было использовано Архимедом для установления законов рычага.
Открытие законов рычага.
Архимед вводит законы рычага на базе геометрии путем добавления к геометрическим аксиомам несколько "механических" аксиом:
1. Равные тяжести на равных длинах уравновешиваются, на неравных же длинах не уравновешиваются, но перевешивают тяжести на большей длине.
Рекомендуем скачать другие рефераты по теме: сочинение по картине, скачать реферат бесплатно на тему.
1 2 3 | Следующая страница реферата