Физика звезд
Категория реферата: Рефераты по астрономии
Теги реферата: российская федерация реферат, реферат бесплатно без регистрации
Добавил(а) на сайт: Маслов.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
ВСПЫХИВАЮЩИЕ И ДВОЙНЫЕ ЗВЕЗДЫ
Вспыхивающие звезды
Магнитные явления на Солнце являются причиной солнечных пятен и
солнечных вспышек, но они не могут существепно повлиять на яркость Солнца.
Для некоторых звезд - красных карликов - это не так: на них подобные
вспышки достигают громадных масштабов, и в результате световое излучение
может возрастать на целую звездную величину, а то и больше. Ближайшая к
Солнцу звезда, Проксима Кентавра, является одной из таких вспыхивающих
звезд. Эти световые выбросы нельзя предсказать заранее, а продолжаются они
всего несколько минут.
Двойные звезды
Примерно половина всех звезд нашей Галактики принадлежит к двойным системам, так что двойные звезды, вращающиеся по орбитам одна вокруг другой, явление весьма распространенное.
Принадлежность к двойной системе очень сильно влияет на всю жизнь звезды, особенно когда напарники находятся близко друг к другу. Потоки вещества, устремляющиеся от одной звезды на другую, приводят к драматическим вспышкам, таким, как взрывы новых и сверхновых звезд.
Двойные звезды удерживаются вместе взаимным тяготением. Обе звезды
двойной системы вращаются по эллиптическим орбитам вокруг некоторой точки, лежащей между ними и называемой центром гравитации этих звезд. Это можно
представить себе как точку опоры, если вообразить звезды сидящими на
детских качелях: каждая на своем конце доски, положенной на бревно. Чем
дальше звезды друг от друга, тем дольше длятся их пути по орбитам.
Большинство двойных звезд (или просто - двойных) слишком близки друг к
другу, чтобы их можно было различить по отдельности даже в самые мощные
телескопы. Если расстояние между партнерами достаточно велико, орбитальный
период может измеряться годами, а иногда целым столетием или даже болше.
Двойные звезды, которые можно увидеть раздельно, называются видимыми
двойными.
Открытие двойных звезд
Чаще всего двойные звезды определяются либо по необычному движению
более яркой из двух, либо по их совместному спектру. Если какая-нибудь
звезда совершает на небе регулярные колебания, это означает, что у нее есть
невидимый партнер. Тогда говорят, что это астрометрическая двойная звезда, обнаруженная с помощью измерений ее положения. Спектроскопические двойные
звезды обнаруживают по изменениям и особым характеристикам их спектров,
Спектр обыкновенной звезды, вроде Солнца, подобен непрерывной радуге, пересеченной многочисленными узкими щелями - так называемыми линиями
поглощепия. Точные цвета, на которых расположены эти линии, изменяются, если звезда движется к нам или от нас. Это явление называется эффектом
Допплера. Когда звезды двойной системы движутся по своим орбитам, они
попеременно то приближаются к нам, то удаляются. В результате лииии их
спектров перемещаются на некотором участке радуги. Такие подвижные линии
спектра говорят о том, что звезда двойная. Если оба участника двойной
системы имеют примерно одинаковый блеск, в спектре можно увидеть два набора
линий. Если одна из звезд гораздо ярче другой, ее свет будет доминировать, но регулярное смещение спектральных линий все равно выдаст ее истинную
двойную природу.
Измеренне скоростей звезд двойной системы и применение законного
тяготения представляют собой важный метод определения масс звезд. Изучение
двойных звезд - это единственный прямой способ вычисления звездных масс.
Тем не менее в каждом конкретном случае не так просто получить точный
ответ.
Тесные двойные звезды
В системе близко расположенных двойных звезд взаимные силы тяготения стремятся растянуть каждую из них, придать ей форму груши. Если тяготение достаточно сильно, наступает критический момент, когда вещество начинает утекать с одной звезды и падать на другую. Вокруг этих двух звезд имеется некоторая область в форме трехмерной восьмерки, поверхность которой представляет собой критическую границу. Эти две грушеобразные фигуры, каждая вокруг своей звезды, называются полостями Роша. Если одна из звезд вырастает настолько, что заполняет свою полость Роша, то вещество с нее устремляется на другую звезду в той точке, где полости соприкасаются. Часто звездный материал не опускается прямо на звезду, а сначала закручивается вихрем, образуя так называемый аккреционный диск. Если обе звезды настолько расширились, что заполнили свои полости Роша, то возникает контактная двойная звезда. Материал обеих звезд перемешивается и сливается в шар вокруг двух звездных ядер. Поскольку в конечном счете все звезды разбухают, превращаясь в гиганты, а многие звезды являются двойными, то взаимодействуюшие двойные системы - явление нередкое.
Одним из поразительных результатов переноса массы в двойных звездах является так называемая вспышка новой.
Одна звезда расширяется так, что заполняет свою полость Роша; это означает раздувание наружных слоев звезды до того момента, когда ее материал начнет захватываться другой звездой, подчиняясь ее тяготению. Эта вторая звезда - белый карлик. Внезапно блеск увеличивается примерно на десять звездных величин - вспыхивает новая. Происходит не что иное, как гигантский выброс энергии за очень короткое время, мощный ядерный взрыв на поверхности белого карлика. Когда материал с раздувшейся звезды устремляется к карлику, давление в низвергающемся потоке материи резко возрастает, а температура под новым слоем увеличивается до миллиона градусов. Наблюдались случаи, когда через десятки или сотни лет вспышки новых повторялись. Другие взрывы наблюдались лишь однжды, но они могут повториться через тысячи лет. На звездах иного типа происходят менее драматические вспышки - карликовые новые, - повторяющиеся через дни и месяцы.
Когда ядерное топливо звезды оказывается израсходованным и в ее глубинах прекращается выработка энергии, звезда начинает сжиматься к центру. Сила тяготения, направленная внутрь, больше не уравновешивается выталкивающей силой горячего газа.
Дальнейшее развитие событий зависит от массы сжимающегося материала.
Если эта масса не превосходит солнечную более чем в 1,4 раза, звезда
стабилизируется, становясь белым карликом. Катастрофического сжатия не
происходит благодаря основному свойству электронов. Существует такая
степень сжатия, при которой они начинают отталкиваться, хотя никакого
источника тепловой энергии уже нет. Правда, это происходит лишь тогда, когда электроны и атомные ядра сжаты невероятно сильно, образуя чрезвычайно
плотную материю.
Белый карлик с массой Солнца по объему приблизительно равен Земле.
Всего лишь чашка вещества белого карлика весила бы на Земле сотню
тонн. Любопытно, что чем массивнее белые карлики, тем меньше их объем. Что
представляет собой внутренность белого карлика, вообразить очень трудно.
Скорее всего это нечто вроде единого гигантского кристалла, который
постепенно остывает, становясь все более тусклым и красным. В
действительности, хотя астрономы белыми карликами называют целую группу
звезд, лишь самые горячие из них, с температурой поверхности около 10 000
С, на самом деле белые. В конечном итоге каждый белый карлик превратится в
темный шар радиоактивного пепла абсолютно мертвые останки звезды. Белые
карлики настолько малы, что даже наиболее горячие из них испускают совсем
немного света, и обнаружить их бывает нелегко. Тем не менее количество
известных белых карликов сейчас исчисляется сотнями; по оценкам астрономов, не менее десятой части всех звезд Галактики - белые карлики. Сириус, самая
яркая звезда нашего неба, является членом двойной системы, и его напарник -
белый карлик под названием Сириус В.
НЕЙТРОННЫЕ ЗВЕЗДЫ
Если масса сжимающейся звезды превосходит массу Солнца более чем в
1,4 раза, то такая звезда, достигнув стадии белого карлика, на этом не
остановится. Гравитационные силы в этом случае столь велики, что электроны
вдавливаются внутрь атомных ядер. В результате протоны превращаются в
нейтроны, способные прилегать друг к другу без всяких промежутков.
Плотность иейтронных звезд превосходит даже плотность белых карликов; но
если масса материала не превосходит 3 солнечных масс, нейтроны, как и
электроны, способны сами предотвратить дальнейшее сжатие. Типичная
нйтронная звезда имеет в поперечникс всего лишь от 10 до 15 км, а один
кубический сантиметр ее вещества весит около миллиарда тонн. Помимо
неслыханно громадной плотности, нейтронные звезды обладают еще двумя
особыми свойствами, которые позволяют их обнаружить, невзирая на столь
малые размеры: это быстрое вращение и сильное магнитное поле. В общем, вращаются все звезды, но когда звезда сжимается, скорость ее вращения
возрастает - точно так же, как фигурист на льду вращается гораздо быстрее, когда прижимает к себе руки. Нейтронная звезда совершает несколько оборотов
в секунду. Наряду с этим исключительно быстрым вращением, нейтронные звезды
имеют магнитное поле, в миллионы раз более сильное, чем у Земли.
ПУЛЬСАРЫ
Первыс пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражены тем фактом, что какие-то природные объекты могут излучать радиоимпульсы в таком правильном и быстром ритме. Вначале (правда, ненадолго) астрономы заподозрили участие неких мыслящих существ, обитаюших в глубинах Галактики. Но вскоре было найдено естественное объяснение. В мощном магнитном поле нейтронной звезды движущиеся по спирали электроны генерируют радиоволны, которые излучаются узким пучком, как луч прожектора. Звезда быстро вращается, и радиолуч пересекает линию нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров около четырех секунд, а самых быстрых - тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в двойные системы.
РЕНТГЕНОВСКИЕ ДВОЙНЫЕ ЗВЕЗДЫ
В Галактике найдено, по крайней мере, 100 мощных источников рентгеновского излучения. Рентгеновские лучи обладают настолько большой энергией, что для возникновения их источника должно произойти нечто из ряда вон выходящее. По мнению астрономов, причиной рентгеновского излучения могла бы служить материя, падающая на поверхность маленькой нейтронной звезды.
Возможно, рентгеновские источники представляют собой двойные звезды, одна из которых очень маленькая, но массивная; это может быть нейтронная звезда, белый карлик или черная дыра. Звезда-компаньон может быть либо массивиой звездой, масса которой превосходит солнечную в 10 - 20 раз, либо иметь массу, превосходящую массу Солнца не более чем вдвое. Промежуточные варианты представляются крайне маловероятными. К таким ситуациям приводит сложная история эволюции и обмен массами в двойных системах, Финальный результат зависит от начальных масс и начального расстояния между звездами.
Рекомендуем скачать другие рефераты по теме: отчет по практике, рассказы.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата