Исследование Солнца - ближайшей звезды
Категория реферата: Рефераты по астрономии
Теги реферата: реферат на тему, скачать реферат бесплатно без регистрации
Добавил(а) на сайт: Дия.
1 2 3 4 5 | Следующая страница реферата
От молодого солнца к современному.
При конструировании модели для звёзд главной последовательности можно определить, какое количество энергии выделяется в каждой точке центральной области звезды за счёт сгорания водорода. Известно также, сколько атомов гелия возникает там в каждую секунду. В центре «молодого» Солнца на каждый килограмм вещества образуется за каждый год одна десятимиллионная для грамма гелия. Если вычислить для каждой точки в объёме звезды, сколько гелия образуется там за миллионы лет, то мы получим химический состав модели Солнца, который формируется через миллион лет после начала горения водорода.
Заложив в вычислительную машину новый состав центральных областей
звезды, можно получить новое решение для модели. Но при увеличении
концентрации гелия меняются и свойства звёздного вещества. Иной становится
его прозрачность для излучения, а ядерные реакции превращения водорода в
гелий идут не так полно как в «молодом» Солнце. Такая модель звезды
описывает свойства Солнца через миллионы лет после начала ядерных реакций;
она отличается от модели «молодого» Солнца чрезвычайно слабо, поскольку
миллион лет – это очень малый промежуток времени по сравнению с миллиардами
лет, в течение которых Солнце светит за счёт ядерных реакций. Поэтому
температура поверхности в новой модели почти такая же, как у «молодого»
Солнца, а светимость лишь не на много выше. Поскольку в центре звезды
становится меньше водорода, температура центральных областей Солнца в новой
модели слегка повышается. Это означает, что теперь там образуется чуть
больше энергии, чем прежде.
Новая модель Солнца тоже показывает нам, где освобождается энергия
ядерных реакций и сколько водорода превращается в гелий за каждую секунду.
И снова мы можем определить химический состав звезды ещё через один миллион
лет. Для этого нового химического состава вновь можно построить модель
внутренней структуры Солнца.
Так мы можем последовательно переходить от одной модели Солнца к целому
ряду других. Поскольку в результате каждого расчёта мы можем определить
температуру поверхности и светимость, то каждую из этих моделей можно
изобразить точкой на диаграмме Г – Р (Герцшпрунга и Рессепа). На этой
диаграмме появляется цепочка точек, начало которой совпадает с «молодым»
Солнцем. Эта последовательность точек описывает, как перемещается Солнце
по диаграмме Г – Р в ходе своего развития.
2
Мы определили, таким образом, путь развития Солнца. Он показан на рис.1. на
некоторых участках этой траектории отмечено время, прошедшее с момента
зажигания водорода в недрах Солнца
Рис.1. Путь развития Солнца на диаграмме Г – Р. он начинается от
«молодого» Солнца, проходит через точку, которая соответствует современному Солнцу, а затем уходит в сторону от «молодой» главной последовательности в область красных гигантов. На рисунке обозначено время, прошедшее с момента начала ядерной реакции превращения водорода в гелий в недрах
«молодого» Солнца.
Путь развития нашего модельного Солнца проходит через точку на
диаграмме, которая соответствует нынешнему
времени. Теперь мы хорошо видим, что различия в свойствах между молодым
Солнцем и современным Солнцем связано с постепенной временной эволюцией
нашей звезды.
Расчёты позволили нам определить и возраст нашего Солнца. Между
«молодым» Солнцем на диаграмме и Солнцем в настоящем времени прошло 4,5
млрд. лет. Таков возраст нашего Солнца.
Структуры «молодого» Солнца и современного Солнца не слишком отличаются
друг от друга. Здесь и там мы наблюдаем конвективный внешний слой, в то
время как в более глубокой области энергия переносится от внутренних слоёв
к внешним с помощью излучения. Превращения водорода в гелий происходит в
реакциях протон – протонной цепочки. Современное Солнце отличается от
молодого только тем, что в его центральной области содержится некоторое
количество гелия, возникшего в результате ядерных реакций. В то время как
во внешних слоях на килограмм вещества приходится 270 граммов гелия, в
центральных областях содержание достигает 590 граммов. Примерно 300
граммов на килограмм массы образовалось
3
в результате сгорания водорода. Во внешнем слое солнечное вещество
постоянно перемешивается. Каждый грамм вещества, достигший внешней
поверхности, за некоторое время до этого находится в нижней части
конвективного слоя, где температура вещества составляет около одного
миллиона градусов. Это примерно в 170 раз выше температуры поверхности
Солнца.
4
Почему на Солнце нет дейтерия?
Ядро атома дейтерия одного из изотопов водорода, состоит из протона и
нейтрона. Дейтерий не может существовать при высокой температуре, которые
наблюдаются в недрах звёзды. Уже при температуре в 500 000 градусов
ядра дейтерия могут взаимодействовать с ядрами водорода. В результате такой
реакции образуется изотоп гелия. Дейтерий встречается в природе в небольших
количествах: его можно найти, например, в межзвёздном веществе, из которого
образовались все звёзды. При рождении Солнца дейтерий тоже должен был войти
в его состав, поскольку след этого изотопа водорода наблюдается и на Земле.
Так, на пример, в океанской воде на каждые 5000 атомов обычного водорода
встречается 1 атом дейтерия.
Однако этот изотоп отсутствует в солнечной атмосфере. Это не
удивительно, поскольку из нашей компьютерной модели следует, что во внешних
слоях солнца дейтерия просто не может быть. Причиной этого является
конвекция. Каждый атом дейтерия на внешней поверхности Солнца рано или
поздно окажется в результате конвективного перемешивания у дна конвективной
зоны. В этой области температура приближается к одному миллиону градусов.
Как только атом дейтерия попадает в эту область, он при столкновении с ядром водорода превращается в изотоп гелия. За время, прошедшее с момента возникновения Солнца, весь дейтерий должен был
разрушиться. Даже если сегодня дейтерий попадает на Солнце откуда-нибудь из
космического пространства, то через два или три года атомы дейтерия
окажутся во внутренних, горячих слоях Солнца и превратятся в атомы гелия.
5
Почему на Солнце мало лития?
Наша компьютерная модель не может объяснить всех фактов. Когда астрономы
изучали химический состав солнечной поверхности, то оказалось, что на
Солнце чрезвычайно редко встречается (по сравнению с концентрацией на
Земле) ещё один элемент литий. Этот элемент относится к числу наиболее
лёгких в периодической системе: ядро атома лития состоит из 4 нейтронов и 3
протонов. Такие атомы встречаются на Солнце крайне редко. По сравнению с
его концентрацией на Земле, а также по сравнению с концентрацией в
метеоритном веществе, которое попадает на Землю из космического
пространства, один килограмм солнечного газа содержит в 100 раз меньше
лития. Может быть, этот элемент тоже разрушается при высоких температурах в
нижней части конвективной зоны?
Действительно литий может поглощать протон, и распадаться на два атома
гелия. Но температура в один миллион градусов, которая наблюдается в нижней
части конвективной зоны, недостаточна для этой реакции. Разрушение лития
происходит значительно глубже, примерно при температуре 3 миллиона
градусов. Во всех компьютерных моделях, существующих к нашему времени, конвективная зона не проникает ниже слоя с температурой 1 миллион градусов.
Поэтому наша модель не может объяснить малое содержание лития на Солнце.
Может быть литий отсутствовал с самого начала? Это чрезвычайно мало
вероятно. В настоящее время считается, что Солнце, планеты и метеориты
возникли из одного и того же вещества, которое первоначально имело один и
тот же химический состав. Куда же девался литий на Солнце? Как объяснить
это парадокс?
Выход из положения есть: в промежуток времени между образованием звёзд и начала ядерных реакций превращения водорода в гелий, не конвективная зона на Солнце проникала существенно глубже, чем теперь. Она достигала областей с температурой, по меньшей мере, в 3 миллиона градусов. В это время большая часть лития, из внешних слоёв Солнца могла проникнуть в глубину и разрушиться.
6
Что произойдёт в будущем с нашим Солнцем?
Что же будет дальше? Что произойдёт, когда всё больше водорода будет выгорать, и в центре Солнца будет накапливаться гелий? Модельные расчёты показывают, прежде всего, что в ближайшие 5 миллиардов лет практически ничего не изменится. Солнце будет медленно (как показано на рис.1.) перемещаться вверх по своему пути развития. Светимость Солнца при этом будет постепенно повышаться, а температура на его поверхности станет в начале чуть выше, а затем начнёт медленно снижаться, но все эти изменения будут невелики.
Рекомендуем скачать другие рефераты по теме: бесплатные шпаргалки, конспект урока.
1 2 3 4 5 | Следующая страница реферата