Белковый баланс организма
Категория реферата: Биология и химия
Теги реферата: рефераты по медицине, матершинные частушки
Добавил(а) на сайт: Avdej.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Приложение
ФЕРМЕНТЫ (от лат. fermentum — закваска) (энзимы), биологические катализаторы, присутствующие во всех живых клетках. Осуществляют превращения веществ в организме, направляя и регулируя тем самым его обмен веществ. По химической природе — белки. Ферменты обладают оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов, отсутствии ингибиторов. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Все ферменты подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926). Ферментные препараты применяют в медицине, в пищевой и легкой промышленности.
Роль ферментов в организме
Ферменты участвуют в осуществлении всех процессов обмена веществ, в реализации генетической информации. Переваривание и усвоение пищевых веществ, синтез и распад белков, нуклеиновых кислот, жиров, углеводов и других соединений в клетках и тканях всех организмов — все эти процессы невозможны без участия ферментов. Любое проявление функций живого организма — дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и др. — обеспечивается действием ферментов. Индивидуальные особенности клеток, выполняющих определенные функции, в значительной мере определяются уникальным набором ферментов, производство которых генетически запрограммировано. Отсутствие даже одного фермента или какой-нибудь его дефект могут привести к серьезным отрицательным последствиям для организма.
Местонахождение ферментов в организме
В клетке часть ферментов находится в цитоплазме, но в основном ферменты связаны с определенными клеточными структурами, где и проявляют свое действие. В ядре, например, находятся ферменты, ответственные за репликацию — синтез ДНК (ДНК-полимеразы), за ее транскрипцию — образование РНК (РНК-полимеразы). В митохондриях присутствуютферменты, ответственные за накопление энергии, в лизосомах — большинство гидролитических ферментов, участвующих в распаде нуклеиновых кислот и белков.
Условия действия ферментов
Все реакции с участием ферментов протекают, в основном, в нейтральной, слабощелочной или слабокислой среде. Однако максимальная активность каждого отдельного фермента проявляется при строго определенных значениях pH. Для действия большинства ферментов теплокровных животных наиболее благоприятной температурой является 37-400 С. У растений при температуре ниже 00 С действие ферментов полностью не прекращается, хотя жизнедеятельность растений при этом резко снижается. Ферментативные процессы, как правило, не могут протекать при температуре выше 700 С, так как ферменты, как и всякие белки подвержены тепловой денатурации (разрушению структуры).
Протекание процессов с участием ферментов
Большинство ферментов отличается высокой специфичностью (избирательностью) действия, когда превращение каждого реагирующего вещества (субстрата) в продукт реакции осуществляется специальным ферментом. При этом действие фермента может быть строго ограничено одним субстратом. Например, фермент уреаза, участвующий в распаде мочевины до аммиака и углекислого газа, не реагирует на сходную по строению метилмочевину. Многие ферменты действуют на несколько родственных по структуре соединений или на один тип химической связи (например, расщепляющие фосфодиэфирную связь фермент фосфатазы).
Фермент осуществляет свое действие через образование фермент-субстративного комплекса, который затем распадается с образованием продуктов ферментативной реакции и освобождением фермента. В результате образования фермент-субстратного комплекса субстрат изменяет свою конфигурацию; при этом преобразуемая фермент-химическая связь ослабляется и реакция протекает с меньшей начальной затратой энергии и, следовательно, с намного большей скоростью. Мерой скорости ферментативной реакции служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Многие ферментативные реакции в зависимости от концентрации в среде субстрата и продукта реакции могут протекать как в прямом, так и в обратном направлении (избыток субстрата сдвигает реакцию в сторону образования продукта, в то время как при чрезмерном накоплении последнего будет происходить синтез субстрата). Это означает, что ферментативные реакции могут быть обратимыми. Например, карбоангидраза крови превращает поступающий из тканей углекислый газ в угольную кислоту (H2CO3), а в легких, напротив, катализирует превращение угольной кислоты в воду и углекислый газ, который удаляется при выдохе. Однако следует помнить, что ферменты, как и другие катализаторы, не могут сдвигать термодинамическое равновесие химической реакции, а лишь значительно ускоряют достижение этого равновесия.
Номенклатура названий ферментов
При наименовании фермента за основу берут название субстрата и добавляют суффикс «аза». Так появились, в частности, протеиназы — ферменты, расщепляющие белки (протеины), липазы (расщепляют липиды, или жиры) и т. д. Некоторые ферменты получили специальные (тривиальные) названия, например, пищеварительные ферменты— пепсин, химотрипсин и трипсин.
В клетках организма протекает несколько тысяч различных реакций обмена веществ и, следовательно, имеется столько же ферментов. Для того, чтобы привести такое многообразие в систему, было принято международное соглашение о классификации ферментов. В соответствии с этой системой все ферменты в зависимости от типа катализируемых ими реакций были поделены на шесть основных классов, каждый из которых включает ряд подклассов. Кроме того, каждый фермент получил четырехзначный кодовый номер (шифр) и название, указывающее на реакцию, которую этот фермент катализирует. Ферменты, катализирующие одну и ту же реакцию у организмов разных видов, могут существенно различаться между собой по своей белковой структуре, но в номенклатуре имеют общее название и один кодовый номер.
Болезни, связанные с нарушением выработки ферментов
Отсутствие или снижение активности какого-либо фермента (нередко и избыточная активность) у человека приводит к развитию заболеваний (энзимопатий) или гибели организма. Так, передаваемое по наследству заболевание детей — галактоземия (приводит к умственной отсталости) — развивается вследствие нарушения синтеза фермента, ответственного за превращение галактозы в легко усваиваемую глюкозу. Причиной другого наследственного заболевания — фенилкетонурии, сопровождающегося расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение аминокислоты фенилаланина в тирозин. Определение активности многих ферментов в крови, моче, спинно-мозговой, семенной и других жидкостях организма используется для диагностики ряда заболеваний. С помощью такого анализа сыворотки крови возможно обнаружение на ранней стадии инфаркта миокарда, вирусного гепатита, панкреатита, нефрита и других заболеваний.
Использование ферментов человеком
Так как ферменты сохраняют свои свойства и вне организма, их успешно используют в различных отраслях промышленности. Например, протеолитический фермент папайи (из сока папайи) — в пивоварении, для смягчения мяса; пепсин — при производстве «готовых» каш и как лекарственный препарат; трипсин — при производстве продуктов для детского питания; реннин (сычужный фермент из желудка теленка) — в сыроварении. Каталаза широко применяется в пищевой и резиновой промышленности, а расщепляющие полисахариды целлюлазы и пектидазы — для осветления фруктовых соков. Ферменты необходимы при установлении структуры белков, нуклеиновых кислот и полисахаридов, в генетической инженерии и т. д. С помощью ферментов получают лекарственные препараты и сложные химические соединения.
Обнаружена способность некоторых форм рибонуклеиновых кислот (рибозимов) катализировать отдельные реакции, то есть выступать в качестве ферментов. Возможно, в ходе эволюции органического мира рибозимы служили биокатализаторами до того, как ферментативная функция перешла к белкам, более приспособленным к выполнению этой задачи.
ГЕМОГЛОБИН (от гемо... и лат. globus — шар), красный дыхательный пигмент крови человека, позвоночных и некоторых беспозвоночных животных. Переносит кислород от органов дыхания к тканям и углекислый газ от тканей к дыхательным органам. Состоит из белка (глобина) и железопорфириновой простетической группы (гема). У различных видов организмов гемоглобин имеет разное строение. Гемоглобин человека состоит из 4 полипептидных цепей — двух идентичных цепей (в каждой по 141 аминокислотному остатку) и двух идентичных цепей (в каждой по 146 остатков).
ИММУНОГЛОБУЛИНЫ, белки (гликопротеиды), обладающие активностью антител. Содержатся главным образом в глобулиновой фракции плазмы (сыворотки) крови позвоночных животных и человека. Синтезируются плазматическими клетками и участвуют в создании иммунитета. Препараты иммуноглобулинов используются в медицине.
ТРАНСЛЯЦИЯ, в биологии — биосинтез белков в живой клетке на рибосомах; 2-й этап реализации генетической информации, в процессе которого последовательность нуклеотидов информационной, или матричной, РНК «переводится» в аминокислотную последовательность синтезирующегося белка. Протекает с участием транспортных РНК и соответствующих ферментов.
ГЛОБУЛЯРНЫЕ БЕЛКИ, белки, в молекулах которых полипептидные цепи плотно свернуты в компактные шарообразные структуры — глобулы. К глобулярным белкам относятся ферменты, антитела, некоторые гормоны и многие другие белки, выполняющие в клетках динамические функции. Ср. Фибриллярные белки.
ФИБРИЛЛЯРНЫЕ БЕЛКИ, образованы полипептидными цепями, которые расположены параллельно друг другу вдоль одной оси и образуют длинные волокна (фибриллы) или слой. Нерастворимы в воде и растворах солей. Основные структурные элементы соединительной ткани (коллаген и др.).
ИНСУЛИН, белковый гормон животных и человека, вырабатываемый поджелудочной железой. Понижает содержание сахара в крови, задерживая распад гликогена в печени и увеличивая использование глюкозы мышечными и другими клетками. Недостаток инсулина приводит к сахарному диабету.
ГАММА-ГЛОБУЛИН, в медицине — фракция белков плазмы крови (человека или животных), содержащая противобактериальные и противовирусные антитела. Применяется с лечебной и профилактической целью.
Рекомендуем скачать другие рефераты по теме: ответы по контрольной, сообщения бесплатно.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата