Дыхание у растений
Категория реферата: Биология и химия
Теги реферата: картинки реферат, шпори политология
Добавил(а) на сайт: Oldama.
1 2 3 | Следующая страница реферата
«огневой воздух» (кислород) и выделяли «связанный воздух» (углекислоту). Ингенгуз и Сенебье примирили наблюдения обоих исследователей, признав за растением обе функции газообмена. Ингенгуз писал в своей работе, опубликованной в 1779 г.:
«Когда солнце, поднявшееся над горизонтом, разбудит своими лучами заснувшие за ночь растения, оно сделает их способными исполнять свою целительную функцию – исправлять воздух для животных; во мраке ночи эта деятельность совсем прекращается; днем же совершается с тем большим оживлением, чем светлее день и чем выгоднее расположено растение в отношении солнечных лучей. Затененные высокими зданиями или другими растениями, они не исправляют воздух, а, наоборот, выделяют вредный для дыхания животных воздух. К концу дня выработка очищенного воздуха ослабевает и при заходе солнца совершенно прекращается».
Первые точные исследования процесса дыхания у растений принадлежат Соссюру (1804). Он брал свежие листья и помещал их на ночь в сосуд, наполненный воздухом. При этом кислород воздуха поглощался и выделялся углекислый газ. Если на следующий день листья снова выставлялись на солнечный свет, то они выделяли почти такое же количество кислорода, какое поглотили ночью. Свои исследования Соссюр распространил и на незеленые части растений: стебли древесных растений, цветки, корни, плоды, и доказал, что дыхание наблюдается также в клетках этих органов. Он обнаружил, что при дыхании потеря в весе растения равна весу выделенного углерода.
Соссюр обратил внимание и на то, что молодые, растущие части растения, например новые побеги и распускающиеся цветки, дышат интенсивнее и потребляют кислорода больше, чем части растения, прекратившие рост. Особенно интересные данные получены Соссюром относительно дыхания цветков и связанного с ним повышения температуры.
До раскрывания цветков початок поглощал сравнительно малый объем кислорода, превосходивший объем початка не более чем в 8 раз, и оставался совершенно холодным. Как только цветки начинали распускаться, объем поглощаемого кислорода сразу возрастал, превосходя объем початка в 30 и более раз, и температура соцветия повышалась. Исследуя нагревание отдельных частей соцветия, Соссюр установил, что тычинки нагревались сильнее других частей цветка, что он объяснил их более интенсивным дыханием.
Зависимость интенсивности дыхания семян проса от влажности
Влияние температуры на интенсивность дыхания семян пшеницы
Дальнейшими исследованиями была установлена зависимость дыхания от внешних условий (освещения, температуры и т.п.). Выяснилось, что интенсивность дыхания возрастает почти прямо пропорционально температуре, но только до известных пределов (около 40 °С). При дальнейшем повышении температуры газообмен остается постоянным до гибели растения от перегрева.
Удалось установить косвенную зависимость дыхания растений от освещения, а также от стадии роста. Развитие дыхательных процессов у растущих частей выражается так называемой большой кривой дыхания растений. Она сходна с ранее открытой физиологами большой кривой роста: растение растет сначала медленно, затем постепенно скорость роста увеличивается, доходит до максимума и так же постепенно падает.
Со времен Лавуазье дыхание организмов отождествлялось с медленным горением, причем его сущностью считалось прямое окисление углеводов и жиров организма кислородом вдыхаемого воздуха. Однако уже давно было замечено, что при дыхании окисление органических веществ проходит гораздо полнее, чем вне организма при той же температуре. Это давало виталистам надежду на установление коренного различия между процессами, совершающимися в организме и вне его. В таком неопределенном положении находился вопрос о химизме дыхания до середины XIX в.
Переломный момент в изучении дыхания растений связан с открытием того, что даже в бескислородной среде растения (а равно и животные) продолжают выделять углекислоту. Теоретическое истолкование это явление впервые получило в работах Луи Пастера (1822–1895), который в 1872 г. обратил внимание ботаников на его сходство со спиртовым брожением, обычным у дрожжевых грибков.
Пастер предположил, что некоторые начальные этапы дыхательного процесса у высших растений и животных сходны с процессом анаэробного дыхания у микроорганизмов. Свои предположения Пастер обосновывал данными, полученными упомянутыми выше физиологами: в отсутствие кислорода высшие растения выделяли углекислоту, а в их тканях накапливался спирт.
Идеей Пастера заинтересовался Пфеффер (1878). Одностадийное окисление углевода кислородом воздуха (С6Н12О6 + 6О2 = 6СО2 + 6Н2О), использовавшееся до того для описания дыхания, он разбил на два последовательных этапа:
1) С6Н12О6 = 2С2Н5ОН + 2СО2,
2) 2С2Н5ОН + 6О2 = 4СО2 + 6Н2О.
Первая стадия соответствовала бескислородному дыханию и представляла собой распад сахара на спирт и углекислоту. Вторая стадия, требующая кислорода, состояла в окислении спирта до углекислоты и воды.
Примерно через год Вортман (1879) предложил другую схему. По его мнению все количество углекислоты выделяется сразу в первой фазе брожения:
3С6Н12О6 = 6С2Н5ОН + 6СО2, а на второй стадии образовавшиеся молекулы спирта присоединяют молекулы кислорода воздуха, что приводит к восстановлению части исходного сахара и выделению воды:
6С2Н5ОН + 6О2 = 2С6Н12О6 + 6Н2О.
Обе теории были простыми, но благодаря им широкие круги химиков и физиологов обратили внимание на процесс брожения. С этого времени процессы брожения становятся объектом пристального изучения.
Во второй половине XIX в. область изучения процессов брожения представляла собой арену борьбы различных школ. Школа Бертло, открывшего фермент инвертазу, отстаивала точку зрения, согласно которой процессы брожения обусловлены особыми веществами – ферментами. Школа Пастера выдвигала теорию «ферментов-существ», т.е. считала микробы активным началом процессов брожения.
В 1883 г. японский химик Иошида установил ферментативную природу окисления органических веществ растительного сока. Как известно, японцы в свое время достигли большого совершенства в кустарном производстве черных лаковых изделий. Иошида решил выяснить, как образуется черное вещество японского лака из бесцветного сока лакового дерева. Оказалось, что этот процесс, состоящий в окислении сока лакового дерева кислородом воздуха, происходит только в присутствии особого фермента.
Молодой японский химик констатировал только ферментный характер этого процесса. Французский химик Бертран, более детально исследовал этот процесс. Он назвал фермент, ответственный за окисление сока, лакказой (от слова лак) и, исследуя другие растительные соки, пришел к убеждению, что лакказа является представителем целой группы окислительных ферментов, весьма распространенных в природе. Для них Бертран предложил название оксидазы.
Рекомендуем скачать другие рефераты по теме: темы рефератов по психологии, шпаргалки по математике.
1 2 3 | Следующая страница реферата