Гормоны
Категория реферата: Биология и химия
Теги реферата: реферат роль, изложение 6 класс
Добавил(а) на сайт: Лебния.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Желудочно-кишечные гормоны. Гормоны желудочно-кишечного тракта – гастрин, холецистокинин, секретин и панкреозимин. Это полипептиды, секретируемые слизистой оболочкой желудочно-кишечного тракта в ответ на специфическую стимуляцию. Полагают, что гастрин стимулирует секрецию соляной кислоты; холецистокинин контролирует опорожнение желчного пузыря, а секретин и панкреозимин регулируют выделение сока поджелудочной железы.
Нейрогормоны – группа химических соединений, секретируемых нервными клетками (нейронами). Эти соединения обладают гормоноподобными свойствами, стимулируя или подавляя активность других клеток; они включают упомянутые ранее рилизинг-факторы, а также нейромедиаторы, функции которых заключается в передаче нервных импульсов через узкую синаптическую щель, отделяющую одну нервную клетку от другой. К нейромедиаторам относятся дофамин, адреналин, норадреналин, серотонин, гистамин, ацетилхолин и гамма-аминомасляная кислота.
В середине 1970-х годов был открыт ряд новых нейромедиаторов, обладающих морфиноподобным обезболивающим действием; они получили название «эндорфины», т.е. «внутренние морфины». Эндорфины способны связываться со специальными рецепторами в структурах головного мозга; в результате такого связывания в спинной мозг посылаются импульсы, которые блокируют проведение поступающих болевых сигналов. Болеутоляющее действие морфина и других опиатов несомненно обусловлено их сходством с эндорфинами, обеспечивающим их связывание с теми же блокирующими боль рецепторами.
Терапевтическое использование гормонов
Гормоны использовались первоначально в случаях недостаточности какой-либо из желез внутренней секреции для замещения или восполнения возникшего гормонального дефицита. Первым эффективным гормональным препаратом был экстракт щитовидной железы овцы, примененный в 1891 английским врачом Г.Марри для лечения микседемы. На сегодняшний день гормональная терапия способна восполнить недостаточную секрецию практически любой эндокринной железы; прекрасные результаты дает и заместительная терапия, проводимая после удаления той или иной железы. Гормоны могут использоваться также для стимуляции работы желез. Гонадотропины, например, применяют для стимуляции половых желез, в частности для индукции овуляции.
Кроме заместительной терапии, гормоны и гормоноподобные препараты используются и для других целей. Так, избыточную секрецию андрогена надпочечниками при некоторых заболеваниях подавляют кортизоноподобными препаратами. Другой пример – использование эстрогенов и прогестерона в противозачаточных таблетках для подавления овуляции.
Гормоны могут применяться и как агенты, нейтрализующие действие других медикаментозных средств; при этом исходят из того, что, например, глюкокортикоиды стимулируют катаболические процессы, а андрогены – анаболические. Поэтому на фоне длительного курса глюкокортикоидной терапии (скажем, в случае ревматоидного артрита) нередко дополнительно назначают анаболические средства для снижения или нейтрализации ее катаболического действия.
Часто гормоны применяют как специфические лекарственные средства. Так, адреналин, расслабляющий гладкие мышцы, очень эффективен в случаях приступа бронхиальной астмы. Гормоны используются и в диагностических целях. Например, при исследовании функции коры надпочечников прибегают к ее стимуляции, вводя пациенту АКТГ, а ответ оценивают по содержанию кортикостероидов в моче или плазме.
В настоящее время препараты гормонов начали применяться почти во всех областях медицины. Гастроэнтерологи используют кортизоноподобные гормоны при лечении регионарного энтерита или слизистого колита. Дерматологи лечат угри эстрогенами, а некоторые кожные болезни – глюкокортикоидами; аллергологи применяют АКТГ и глюкокортикоиды при лечении астмы, крапивницы и других аллергических заболеваний. Педиатры прибегают к анаболическим веществам, когда необходимо улучшить аппетит или ускорить рост ребенка, а также к большим дозам эстрогенов, чтобы закрыть эпифизы (растущие части костей) и предотвратить таким образом чрезмерный рост.
При трансплантации органов используют глюкокортикоиды, которые уменьшают шансы отторжения трансплантата. Эстрогены могут ограничивать распространение метастазирующего рака молочной железы у больных в период после менопаузы, а андрогены применяются с той же целью до менопаузы. Урологи используют эстрогены, чтобы затормозить распространение рака предстательной железы. Специалисты по внутренним болезням обнаружили, что целесообразно использовать кортизоноподобные соединения при лечении некоторых типов коллагенозов, а гинекологи и акушеры применяют гормоны при терапии многих нарушений, прямо не связанных с гормональным дефицитом.
Гормоны беспозвоночных
Гормоны беспозвоночных изучены главным образом на насекомых, ракообразных и моллюсках, причем многое в этой области все еще остается неясным. Иногда отсутствие сведений о гормонах того или иного вида животных объясняется просто тем, что у данного вида нет специализированных эндокринных желез, а отдельные группы клеток, секретирующих гормоны, с трудом поддаются обнаружению.
Вероятно, любая функция, регулируемая гормонами в организме позвоночных, сходным образом регулируется и у беспозвоночных. У млекопитающих, например, нейромедиатор норадреналин учащает сердцебиение, а у краба Cancer pagurus и омара Homarus vulgaris ту же роль играют нейрогормоны – биологически активные вещества, вырабатываемые нейросекреторными клетками нервной ткани. Обмен кальция в организме регулируется у позвоночных гормоном паращитовидных желез, а у некоторых беспозвоночных – гормоном, который вырабатывается особым органом, расположенным в грудном отделе тела. Гормональной регуляции подчинены и многие другие функции у беспозвоночных, в том числе метаморфоз, движение и перегруппировка пигментных гранул в хроматофорах, интенсивность дыхания, созревание половых клеток в гонадах, формирование вторичных половых признаков и рост тела.
Метаморфоз. Наблюдения над насекомыми выявили роль гормонов в регуляции метаморфоза, причем показано, что ее осуществляют несколько гормонов. Мы остановимся на двух важнейших гормонах-антагонистах. На каждом из тех этапов развития, которые сопровождаются метаморфозом, нейросекреторные клетки головного мозга насекомых вырабатывают т.н. мозговой гормон, стимулирующий в проторакальной (переднегрудной) железе синтез стероидного гормона, индуцирующего линьку, – экдизона. В то самое время, когда в организме насекомого синтезируется экдизон, в прилежащих телах (corpora allata) – двух небольших железах, расположенных в голове насекомого – вырабатывается т.н. ювенильный гормон, который подавляет действие экдизона и обеспечивает после линьки следующую личиночную стадию. По мере роста личинки ювенильного гормона вырабатывается все меньше и, наконец, количество его оказывается уже недостаточным для того, чтобы препятствовать линьке. Например, у бабочек уменьшение содержания ювенильного гормона приводит к тому, что последняя личиночная стадия после линьки превращается в куколку.
Взаимодействие гормонов, регулирующих метаморфоз, продемонстрировано в ряде экспериментов. Известно например, что клоп Rhodnius prolixus в ходе нормального жизненного цикла до превращения во взрослую форму (имаго) претерпевает пять линек. Если, однако, обезглавить личинки, то у выживших метаморфоз окажется укороченным и из них разовьются хотя и миниатюрные, но в остальном нормальные взрослые формы. То же явление можно наблюдать и у личинки бабочки цекропиевого шелкопряда (Samia cecropia), если удалить у нее прилежащие тела и тем самым исключить синтез ювенильного гормона. В этом случае, так же, как у Rhodnius, метаморфоз будет укороченным и взрослые формы окажутся меньше обычных. И наоборот, если от молодой гусеницы цекропиевого шелкопряда пересадить прилежащие тела личинке, уже готовой превратиться в имаго, то метаморфоз затянется и личинки будут крупнее обычных.
Ювенильный гормон удалось недавно синтезировать и теперь его можно получать в больших количествах. Опыты показали, что если воздействовать гормоном в высоких концентрациях на яйца насекомых или на иной стадии их развития, когда этот гормон в норме отсутствует, то возникают серьезные нарушения метаболизма, приводящие к гибели насекомого. Подобный результат позволяет надеяться, что синтетический гормон окажется новым и весьма эффективным средством борьбы с насекомыми-вредителями. По сравнению с химическими инсектицидами, ювенильный гормон имеет ряд важных преимуществ. Он не оказывает влияния на жизнедеятельность других организмов, в отличие от пестицидов, серьезно нарушающих экологию целых регионов. Не менее важно и то, что к любому пестициду у насекомого рано или поздно может развиться устойчивость, но маловероятно, чтобы у какого-нибудь насекомого развилась устойчивость к своим собственным гормонам.
Размножение. Эксперименты свидетельствуют о том, что гормоны участвуют в размножении насекомых. У комаров, например, они регулируют как образование яиц, так и их откладку. Когда самка комара переваривает поглощенную ею порцию крови, стенки желудка и брюшка растягиваются, что служит пусковым сигналом для передачи импульсов в мозг. Примерно через час особые клетки в верхней части мозга выделяют в гемолимфу («кровь»), циркулирующую в полости тела, гормон, стимулирующий секрецию другого гормона двумя железами, расположенными в области пережима, или шейки. Этот второй гормон стимулирует не только созревание яиц, но и запасание в них питательных веществ. У зрелых самок комара в светлые часы суток под воздействием света на соответствующие центры нервной системы выделяется специальный гормон, стимулирующий откладку яиц, что обычно происходит после полудня, т.е. еще в дневное время. При искусственной смене «ночи на день» этот порядок может быть нарушен: в опытах с комаром Aedes aegypti (переносчиком желтой лихорадки) самки откладывали яйца ночью, если их держали ночью в освещенных садках, а днем – в затемненных. У большинства видов насекомых откладку яиц стимулирует гормон, вырабатываемый определенным участком прилежащих тел.
У тараканов, кузнечиков, клопов и мух созревание яичников зависит от одного из гормонов, секретируемых прилежащими телами; в отсутствие этого гормона яичники не созревают. В свою очередь яичники вырабатывают гормоны, влияющие на прилежащие тела. Так, при удалении яичников наблюдалась дегенерация прилежащих тел. Если же такому насекомому пересаживали зрелые яичники, то спустя некоторое время обычный размер прилежащих тел восстанавливался.
Половые различия. Многим беспозвоночным, в том числе и насекомым, свойствен половой диморфизм, т.е. различие морфологических признаков у мужских и женских особей. У комаров, например, самка питается кровью млекопитающих и ее ротовой аппарат приспособлен к прокалыванию кожи, а самцы питаются нектаром или растительными соками и хоботок у них более длинный и тонкий. У пчел половой диморфизм отчетливо коррелирует с особенностями поведения и судьбы каждой касты особей: самцы (трутни) служат лишь для размножения и после брачного полета погибают, самки представлены двумя кастами – маткой (царицей), которая имеет развитую половую систему и участвует в размножении, и стерильными рабочими пчелами. Наблюдения и эксперименты, проводимые над пчелами и другими беспозвоночными, показывают, что развитие половых признаков регулируется гормонами, которые вырабатываются половыми железами.
У многих ракообразных мужской половой гормон (андроген) вырабатывается андрогенной железой, находящейся в семяпроводе. Этот гормон необходим для формирования семенников и придаточных (копулятивных) половых органов, а также для развития вторичных половых признаков. При удалении андрогенной железы меняются и форма тела, и функции, так что кастрированный самец становится в конце концов похожим на самку.
Изменение окраски. Способность к изменению окраски тела свойственна многим беспозвоночным, в том числе насекомым, ракообразным и моллюскам. Палочник Dixippus на зеленом фоне кажется зеленым, а на более темном напоминает палочку, как бы покрытую корой. У палочников, как и у многих других организмов, изменение окраски тела в зависимости от окраски фона – одно из главных средств защиты, позволяющее животному ускользнуть от внимания хищника.
В организме беспозвоночных, способных к изменению окраски тела, вырабатываются гормоны, стимулирующие движение и перегруппировку гранул пигментов. Как в светлое, так и в темное время суток, зеленый пигмент распределен в хроматофорах равномерно, поэтому в дневные часы палочник окрашен в зеленый цвет. Гранулы же коричневого и красного пигментов в условиях освещенного фона сгруппированы по краям клетки. При наступлении темноты или снижении освещенности происходит рассеивание гранул темных пигментов и насекомое приобретает окраску коры деревьев. Реакция хроматофоров вызывается нейрогормоном, выделяемым мозгом в ответ на изменение освещенности фона. Под действием света этот гормон поступает в кровь и доставляется ею к клетке-мишени. Другие гормоны насекомых, регулирующие перемещение пигментов, поступают в кровь из прилежащих тел и из ганглия (нервного узла), расположенного под пищеводом.
Ретинальные пигменты сложного глаза ракообразных тоже перемещаются в ответ на изменение освещенности, и эта адаптация к свету подчинена гормональной регуляции. Кальмары и другие моллюски также имеют пигментные клетки, реакция которых на свет регулируется гормонами. У кальмара хроматофоры содержат синий, пурпурный, красный и желтый пигменты. При соответствующей стимуляции его тело может принимать различную окраску, что дает ему возможность мгновенно приспосабливаться к окружающей среде.
Механизмы, управляющие перемещением пигментов в хроматофорах, различны. У осьминога Eledone в хроматофорах имеются волокна, способные сокращаться в ответ на действие тирамина – гормона, вырабатываемого слюнной железой. При их сокращении область, занимаемая пигментами, расширяется и тело осьминога темнеет. При расслаблении волокон в ответ на действие другого гормона, бетаина, эта область сокращается и тело светлеет.
Иной механизм перемещения пигментов обнаружен в клетках кожи насекомых, в клетках сетчатки некоторых ракообразных и у холоднокровных позвоночных. У этих животных пигментные гранулы связаны с высокополимерными белковыми молекулами, которые способны переходить из состояния золя в гель и обратно. При переходе в состояние геля объем, занимаемый белковыми молекулами, уменьшается и пигментные гранулы собираются в центре клетки, что наблюдается в темновой фазе. В световой фазе белковые молекулы переходят в состояние золя; это сопровождается увеличением их объема и рассеиванием гранул по всей клетке.
Рекомендуем скачать другие рефераты по теме: болезни реферат, собрание сочинений.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата