Информационное управление клеточными процессами
Категория реферата: Биология и химия
Теги реферата: класс, реферат современная россия
Добавил(а) на сайт: Gorbunov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Элементарный состав биомолекул всегда тождественно является и эквивалентом информационного генетического сообщения, и средством программного и энергетического обеспечения. Это замечательное свойство живой материи можно назвать тождественностью органического вещества, химической энергии и молекулярной информации!
Поэтому, зная основы биохимии и молекулярной биологии, можно констатировать, что принцип единства вещества, энергии и информации – это и есть тот главный и основной закон, который определяет и обуславливает само существование биологической формы материи. А универсальные свойства элементной базы живой материи лишь подтверждают данную гипотезу [4]. Очевидно, что все без исключения биологические свойства и качества макромолекул оказались напрямую связанными с многофункциональными особенностями составляющих их био-логических элементов.
Поэтому, при рассмотрении живой материи, всегда необходимо учитывать не только структурный (информационный) состав различных биомолекул, но и функциональную взаимозависимость и взаимодополняемость различных характеристик составляющих их элементов. Такое “слияние” различных характеристик био-логических элементов в одно функциональное целое и их информационное содержание, делает возможным проявление тех биологических черт и признаков макромолекул, которые наблюдают биологи. Заметим, что каждый типовой био-логический элемент (химическая буква или символ) характеризуется наличием своих функциональных атомных групп, которые определяют его химические свойства и служат входными и выходными цепями, с помощью которых элементы могут ковалентно соединяться друг с другом в длинные молекулярные цепи. И главное, – важно отметить, что каждый элемент (мономер) имеет еще и свою индивидуальную боковую атомную группу (или группы), которая в живой системе, как считает автор статьи, используется в качестве элементарного информационного химического сигнала!
Вспомним: сообщение в цепи ДНК или РНК кодируется в виде последовательности нуклеотидов, а носителями генетической информации являются азотистые основания – “боковые” атомные группы нуклеотидов. Соответственно, и в полипептидной цепи белка это сообщение записывается в виде последовательности аминокислот, где носителями информации являются их боковые R-группы. Общий алфавит живой материи состоит из более 30 химических букв и символов молекулярного языка живой природы, с помощью которых кодируется биологическая информация. Причем, для “автоматизации” процессов кодирования и перекодирования биологической информации в живой клетке применяются свои молекулярные биопроцессорные системы, такие как аппаратные устройства репликации, транскрипции и трансляции генетической информации. А “теоретической и технологической” основой применения молекулярной базы служат свои универсальные законы и принципы, которые, следует отнести к закономерностям “молекулярной биохимической логики и информатики” [5].
Очевидно, что каждая система биохимических элементов в клетке (нуклеотиды, аминокислоты, жирные кислоты, простые сахара и др.) является отдельным алфавитом и характеризуется своим способом кодирования, а также видом и формой представления молекулярной информации. Это, соответственно, и является первопричиной появления различных классов и великого разнообразия биологических молекул в живых системах.
Причем, функции биомолекул полностью определяются элементарными функциями составляющих их био-логических элементов (букв или символов), – то есть информацией. Каждый элемент в составе биомолекулы всегда взаимодействует с другими элементами или с молекулами воды по особым принципам и правилам, которые также можно отнести к закономерностями молекулярной биохимической логики. Поэтому биохимические элементы здесь становятся ещё и теми программными элементами, с помощью которых строятся алгоритмы функционального поведения различных биологических молекул и структур.
Более того, если, к примеру, логический элемент в цифровой технике является простейшим преобразователем двоичной информации, то каждый био-логический элемент в макромолекуле сам играет роль элементарной структурной, информационной и функциональной единицы. Таким образом, живые клетки, при построении различных биологических молекул и структур и при конструировании различных биологических функций, применяют свои особые, сугубо специфические молекулярные био-логические элементы. Эти элементы (в составе живой материи) реализуют функционально полный набор элементарных биохимических функций и операций, поэтому при их использовании живая природа может получить био-логическую функцию любой сложности.
Значит, аналогом биологических функций в живой системе может служить любая биомолекула, выполняющая те функции, которые обуславливаются программной информацией, загруженной в её структуру! Генетическая память и средства кодирования и программирования белковых молекул находятся на значительных, по молекулярным меркам, расстояниях от объектов управления (субстратов). Поэтому живая клетка вынуждена кодировать информационные сообщения и передавать их по различным каналам связи, сначала в форме линейных молекулярных цепей, а затем и в форме трёхмерных биомолекул. В связи с тем, что информация в клеточной системе записывается с помощью элементарной формы органического вещества (химических букв и символов), – нам всегда следует помнить, что кодирование информации в живой клетке ПОСТОЯННО И НЕИЗМЕННО сопряжено с построением определённых молекулярных цепей и биологических структур! [3]. Молекулярное содержание этих цепей и структур напрямую зависит от той информации, которая в них загружается. Следовательно, любую биомолекулу можно рассматривать с двух различных точек зрения: или со структурной (физико-химической), или же с чисто информационной точки зрения. Это следует из принципа единства вещества, энергии и информации живой материи.
3. Проблема “самоорганизации”, или кодирование и программирование (задание) структур и функций биологических молекул.
Важно всегда помнить, что все типовые мономеры обладают универсальными природными свойствами и являются такими био-логическими единицами, которые в живой клетке предназначены для реализации элементарных функций и операций молекулярной биохимической логики и информатики. Тех функций и операций, которые мы рассмотрели выше. Поэтому, с помощью мономеров и соответствующих аппаратных средств, живая система может реализовать любую биологическую функцию.
К примеру, для кодирования и программирования биологических молекул в клетке применяется два основных способа – линейный химический и пространственный, стереохимический. Иными словами в молекулярной биологии для кодирования биомолекул, то есть для задания построения трёхмерной структуры, используется линейный (химический) принцип записи информации. А для программирования, то есть для задания функций биологическим молекулам, применяется стереохимический (пространственный) принцип записи информации [5]. Линейный принцип кодирования биологических молекул в молекулярных системах широко применяется на разных этапах передачи генетических сообщений. Этот принцип служит инструментом для преобразования линейных цепей в трёхмерную структуру (конформацию) биологических макромолекул. Он основан на комбинационном способе применения различных биохимических букв и символов молекулярного алфавита живой материи.
Наиболее наглядным примером линейного кодирования информации являются процессы репликации, транскрипции или трансляции генетической информации, когда осуществляется матричный перенос информации с одних цепей на другие. Линейный принцип в живой клетке, как правило, используется для кодирования трёхмерной организации биологических молекул. В живой клетке функционируют только трёхмерные биомолекулы и компоненты, поэтому “одномерная” информация, записанная в “линейных” молекулярных цепях должна быть преобразована в трёхмерную структурную организацию и стереохимическую информацию биологических молекул. Благодаря уникальным свойствам элементной базы, структура молекулярных цепей всегда содержит конкретный алгоритм конформационно-информационного преобразования биологических молекул.
Причем, этот принцип существует и применяется для любых биомолекул клетки. К примеру, типовые характеристики полисахаридов и липидов полностью зависят от той кодовой организации мономеров (химических символов), которые используются в структурах данных макромолекул, что можно подтвердить результатами соответствующих исследований. Особенно наглядно это проявляется в полипептидных цепях белковых молекул, где кодируется разнообразнейшая информация. Поэтому важно знать, что любая полипептидная цепь всегда является тождественным эквивалентом соответствующего кодового послания генома, указывающего будущие характеристики белковой молекулы. Причем, каждое сообщение, при передаче информации в полипептидной цепи белка, как правило, передаётся своим индивидуальным кодом (кодовыми комбинациями аминокислот). Поэтому информация в цепи может содержать как свою адресную и “операционную”, так и свою структурную и текстовую (информационную) части. Значит, различные информационные сообщения в полипептидных цепях могут быть представлены различными молекулярными кодами и кодовыми комбинациями аминокислотных остатков.
Метод пространственного (стереохимического) кодирования основан на предварительном преобразовании линейной кодовой комбинации элементов цепей биомолекул в трёхмерную кодовую координатную организацию этих элементов и их боковых атомных групп в пространственной решетке. К примеру, линейная кодовая информация полипептидных цепей (как, впрочем, и других цепей биомолекул) всегда содержит конкретный алгоритм пространственного преобразования макромолекул. При этом сама программа функционирования белковой молекулы (благодаря управляющим средствам и программирующим свойствам элементов) коммутируется лабильными физико-химическими силами, связями и взаимодействиями между боковыми R-группами элементов (аминокислот) в составе её трёхмерной структуры.
Поэтому природа взаимодействий боковых атомных групп, определяющих конформационные особенности и внутреннюю динамику макромолекулы, имеет химическую основу и носит информационный характер, а сами взаимодействия основаны на правилах и принципах молекулярной биохимической логики. Макромолекула как бы стабилизируется самосогласованным сжимающим информационным полем, обусловленным силами притяжения между мономерами (программными элементами).
Поэтому функциональное поведение макромолекулы в клетке, при взаимодействии её с молекулярными партнёрами, определяется свободной энергией и результатом информационного взаимодействия как внутренних, так и внешних составляющих её элементов. В результате преобразований каждый белок клетки получает своё индивидуальное структурное, информационное, энергетическое, функциональное и программное обеспечение. Поэтому, стереохимический принцип кодирования молекулярной биологической информации применяется живой природой для размещения в одной макромолекуле различных по своему назначению сигналов, сообщений, команд управления, а также органов и механизмов их реализации.
Такая организация биомолекул не обладает сильной структурной жесткостью, а всегда достаточно лабильна в тех пределах, которые необходимы для выполнения их биологических функций. В связи с этим, в “молекулярной информатике”, для исследования информационных путей построения и программно-функционального поведения биомолекул, открывается большое поле деятельности [2]. Целью стереохимического кодирования белковых макромолекул является передача адресных информационных сообщений с кодовым разделением различных по своему назначению сигналов. Каждый функционально активный белок клетки, как молекулярный биологический программный объект, всегда состоит из данных, то есть, – функциональных биохимических программных элементов (аминокислот) и физико-химических алгоритмов, определяемых биохимической логикой их взаимодействия.
Очевидно, что молекулярные биологические системы наиболее широко используют стереохимические кодовые сигналы с переносчиком информации в виде трёхмерных биомолекул. А это уже качественно новый скачок в использовании молекулярной информации, которая в такой форме явно становится основной характеристикой живой материи. Стереохимическое кодирование в живых молекулярных системах служит для программирования функций различных биомолекул. И если для компактной трёхмерной упаковки молекулярных цепей, а, следовательно, и информации, в живых системах применяется линейный принцип кодирования, то стереохимический принцип кодирования, как считает автор статьи, служит для программирования самих функций биологических молекул. В силу этих обстоятельств информация в молекулярной биологии приобретает смысл только через функцию, которую она кодирует!
Биологические функции возникают в процессе информационного взаимодействия биологических молекул друг с другом. Поэтому все информационные взаимодействия биомолекул являются прелюдией к выполнению функций биологических. Стереохимическое кодовое разделение сигналов в трёхмерной структуре макромолекулы позволяет белку динамически и информационно взаимодействовать с различными молекулярными партнёрами: с транспортными молекулами, с коферментами, с мембранами клетки, с АТФ, с регуляторными молекулами, с партнёрами по агрегатированию и т. д.
В связи с этим, процесс описания конкретного функционального алгоритма белковой молекулы на языке “стереохимических кодовых команд” предлагаю назвать – “программированием в стереохимических кодах”. Биологические функции возникают лишь в процессе адресной встречи и обмена информацией между биомолекулами с помощью их кодовых стереохимических матриц, которые должны комплементарно соответствовать друг другу. А соответствие информационных кодов биологических молекул в живых системах строится по принципу их структурной (стерической) и химической комплементарности, то есть на основе взаимодополняемости их связей, структур и функций [2].
Собственно, – это и есть те разыскиваемые коды соответствий биологических молекул, которые являются основой их информационного взаимодействия! Стереохимическими кодами – пространственной организацией био-логических элементов в трёхмерной структуре, программируется работа исполнительных органов и механизмов, обуславливаются функции, поведение и биологическая судьба не только белковой, но и любой другой биомолекулы клетки. То есть, таким путём программируются все их биологические механизмы и функции! Как мы видим, особенности построения и функционального поведения биологических молекул непосредственно связаны с их элементарным содержанием и со способом записи и передачи информации между био-логическими элементами, входящими в структуру биомолекул.
Информация в живых молекулярных системах записывается “линейным” химическим или пространственным, стереохимическим способом. А передача информации осуществляется за счет контактного комплементарного принципа взаимодействия биологических молекул. Именно переключение состояний био-логических элементов в трехмерных конформациях, при информационных взаимодействиях биомолекул друг с другом, обеспечивает те функциональные процессы, которые происходят в структурах самих биологических молекул! А порядок и последовательность этих функциональных и динамических проявлений осуществляется той программной информацией, которая заранее была загружена в их структуры. Это, по мнению автора статьи, очень важный момент, на который исследователям живого следует обратить внимание. Исследование информационных процессов должно стать одним из приоритетных направлений в молекулярной информатике.
Таким образом, классическая схема самоорганизации биологических молекул в своей основе держится на информационных процессах! При этом если целью линейного химического кодирования является формирование трехмерных структур, то целью стереохимического кодирования биомолекул является передача адресных информационных сообщений с кодовым разделением различных по своему назначению сигналов [5]. Более чем наглядно это видно, когда такая программа реализуется в форме белков и ферментов, то есть в виде молекулярных биологических автоматов или манипуляторов. Поэтому можно сказать, что это – универсальный путь передачи управляющей информации для непосредственного использования её в различных биологических процессах [2].
Сейчас в биологической литературе появляются работы, в которых авторы утверждают, что генетический текст и генетический код не способны хранить, обрабатывать и передавать огромные массивы информации. В силу этих обстоятельств, якобы, должны существовать иные пути и способы передачи наследственной информации, вплоть до передачи её “высшими сферами”. Однако, у официальной науке нет данных, которые бы, к примеру, подтверждали, что гены могут напрямую управлять живым веществом волновым или лазерным, полевым, цифровым или каким-либо другим способом.
По мнению автора данной статьи, гены управляют живой материей только путем её структурного кодирования и функционального программирования, а все другие сопутствующие – волновые, полевые и др. проявления – вторичны, так как они обусловлены структурно-функциональным и информационным поведением огромного числа биомолекул и клеточных компонентов. Безусловно, некоторые из этих проявлений могут играть дополнительную, вспомогательную роль в управлении живой материей, однако первую скрипку в общем ансамбле процессов, всё-таки, играет программная информация генов, транслированная и загруженная в биологические молекулы и структуры живой системы. Очевидно, что все информационные массивы, загруженные в макромолекулы и другие клеточные компоненты, могут быть переданы только структурными генами, поэтому нет причин сомневаться в информационных возможностях генома.
4. Общие принципы действия клеточной системы управления.
Живые клетки с их программным обеспечением следует отнести к наиболее сложным системам, которые когда-либо существовали в природе. Их сложность определяется чрезвычайной миниатюризацией “изготовления”, многочисленностью входящих в их состав био-логических элементов, бесчисленным количеством ковалентных и нековалентных химических связей между элементами и неопределенностью законов функционирования и преобразования информации. И, кажется, что нет никакой практической возможности и теоретической вероятности разобраться во всей многосложности протекающих химических и биологических процессов.
Рекомендуем скачать другие рефераты по теме: оформление диплома, курсовая работа на тему предприятие.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата