Концепции макромира классической физики и концепции микромира современной науки
Категория реферата: Биология и химия
Теги реферата: антикризисное управление предприятием, доклад на тему
Добавил(а) на сайт: Bubnov.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
3. Вещество и поле отличаются степенью проникновения: вещество проникает мало, наоборот поле полностью проникает.
4. Вещество и поле отличаются закономерностями движения. Скорость движения частиц вещества разнообразна, в случае когда они могут пребывать в полном покое и до приобретения скорости света, частицы поля имеют стабильную скорость, в вакууме их скорость равна скорости света.
5. Вещество и поле отличаются степенью самостоятельности: Частицы вещества характеризуются конечной степенью самостоятельности, частицы же поля – бесконечной степенью самостоятельности.
6. Вещество и поле отличаются степенью концентрации массы и энергии: эта концентрация велика в веществе, и мала в поле.
Революционные открытия, произошедшие в физике в конце XIX - начале ХХ веков доказали, что физическая реальность стала единой, что между веществом и полем не существует обязательной границы, непреодолимого препятствия: точь-в-точь как и вещество поле обладает свойством корпускулярности, вещество же точь-в-точь как и поле обладает свойством волновости.
Зарождение и развитие представлений о кванте.
При переходе физики от изучения макромира к изучению микромира коренным образом изменились представления классической физики о веществе и поле. Изучая микрочастицы, ученые натолкнулись на такую картину, которая казалась парадоксальной с точки зрения классической физики: один и тот же объект демонстрирует и свойство волновости и свойство корпускулярности. Это явление получило название корпускулярно-волнового дуализма.
Первый шаг в области изучения противоречивой природы частиц сделал немецкий ученый Макс Планк. Все началось с появления в физике в конце XIX века такой загвоздки, как «ультрафиолетовая катастрофа». Согласно расчетам, производимым на основе формул классической электродинамики, интенсивность излучения только темных предметов безгранично увеличивалась. Это противоречило практике. Из исследований, проводимых по излучению тепла, М.Планк пришел к выводу о том, что в процессе излучения энергия излучается не в произвольном количестве и беспредельно, а неделимыми порциями – квантами.[5] Энергия кванты определяется числом колебаний, соответствующих излучению (V) и универсальной постоянной, называемой постоянной Планка: E=hn. Как отмечал Планк, приход в физику идеи кванта пока нельзя связывать с созданием квантовой теории, однако 14 декабря 1900 года – дата появления формулы квантовой энергии, стала датой заложения основы этой же теории, днем зарождения атомной физики и началом нового периода в естествознании.
Первым физиком, который встретил открытие влияния элементарного кванта с высоким духовным подъемом и развил его в творчестве. Был А.Эйнштейн. Он в 1905 году, применяя идею квантитативности излучения и поглощения энергии во время теплового излучения к явлениям излучения вообще, заложил основу квантовой теории. Эйнштейн, применяя гипотезу Планка n световым явлениям пришел к выводу о том, что необходимо принять корпускулярную структуру света. Квантовая теория света или теория фотона Эйнштейна подтвердила, что наряду с тем, что свет является волновым явлением распространения в мировом пространстве, он также обладает беспрерывной структурой. Свет можно рассматривать как неделимые энергетические порции, световые кванты и фотоны. Энергия фотонов определяется постоянной Планка (h) и скоростью соответствующих колебаний (n). Монохроматический свет различных цветов (красный, желтый, зеленый, синий, фиолетовый и другие) состоят из световых квантов различной энергии. Идея Эйнштейна о световых квантах предоставила возможность понять и наглядно описать фотоэлектрическое явление, сущность которого состоит в отделении электрона от световой материи. Эксперименты показали, что существование фотоэффекта определяется не интенсивностью падающей на металл световой волны, а частотой света. Если предположить, что каждый фотоэлектрон отделяется одним фотоном, становится ясным, что эффект происходит в том случае, когда энергия фотона становится достаточно большой, чтобы разорвать взаимную связь материи и электрона.
Спустя 10 лет после зарождения толкования фотоэлектрического эффекта в подобном раскладе он был подтвержден опытами американского физика Р.Э.Милликена. Открытое в 1923 году американским ученым А.Х.Комптоном явление (»Эффект Комптона») окончательно подтвердило квантовую теорию. В общем, квантовая теория света – одна из теорий физики, которая неоднократно была подтверждена опытами. Однако таким образом волновая природа света была окончательно подтверждена опытами по явлениям интерференции дифракции. В связи с этим создалась такая парадоксальная ситуация: стало известно, что свет в одно и то же время ведет себя и как волна и как корпускуляр. В этом случае, фотон выступает как специфический вид корпускуляра. Основная характеристика дискретности фотона, особая порция энергии (E=hn) определяется характеристикой чисто волны – частотой (n). Как и все великие природно-научные открытия квантовая теория света приобрела существенный мировоззренческий, теоретическо-познавательный характер.
Представления о фононах-квантах электромагнитного поля стали большим подарком развитию квантовой теории. Поэтому А.Эйнштейн считается одним из великих создателей квантовой теории. Теория Эйнштейна, развивая взгляды М.Планка, предоставила возможность датскому ученому Н.Бору разработать новую модель атома.
Теория атома, предложенная Бором.
В 1913 году датский ученый Нильс Бор, применяя принцип квантитативности к решению проблем строения атома и характеристики спектра атома, устранил противоречия в созданной Резерфордом модели атома. Предложенная в 1911 году Резерфордом модель атома напоминала солнечную систему: в центре ее было расположено ядро, вокруг него по круговым орбитам вращались электроны. Ядро было положительно заряжено, электроны обладали отрицательным электрическим зарядом. Силы притяжения в Солнечной системе в атоме заменялись электрическими силами. Положительный электрический заряд ядра атома, который равнялся порядковому номеру элемента в периодической системе Менделеева, уравновешивался отрицательным электрическим зарядом электронов. Поэтому атом являлся электрически нейтральным.
Анализ планетарной модели атома в рамках классической электродинамики содержал два невозможных противоречия. Первое из этих противоречий состояло в том, что электроны для того, чтобы не потерять свою устойчивость, должны вращаться вокруг ядра. Как известно, круговое движение характеризуется центробежным ускорением. Согласно законам классической электродинамики ускоренно движущиеся электроны должны непременно излучать электромагнитную энергию. Однако в этом случае электроны за очень короткий промежуток (10–8 секунды), расходуя свою энергию на излучение, должны упасть на ядро. Это нам хорошо известно из повседневного опыта. Если бы электроны упали на ядро, тело, состоящее из них, например стоящий перед нами стол, изменил бы свои размеры в 10 тысяч раз.
Второе противоречие планетарной модели атома связано с тем, что постепенно приближающийся в результате излучения к ядру электрон для беспрерывного изменения своей частоты спектр излучения атома должен быть целым. Опыт же показывает, что спектр излучения атома линейный. Другими словами, планетарная модель атома Резерфорда не уживаются с электродинамикой Максвелла.
Квантовая теория атома, которая могла бы решать оба эти противоречия (так называемая «теория Бора о строении атома») была выдвинута Н.Бором. Содержание этой теории формировалось из следующих положений, объединенных в единую, целую идею:
закономерности линейного спектра атома водорода;
ядерная модель атома, предложенная резерфордом;
квантовый характер излучения и поглощения света.
Выдвинутая Н.Бором для объяснения структуры атома новая гипотеза опиралась на три не уживающиеся с принципами классической физики постулата.
Первый постулат: в каждом атоме существует несколько стационарных состояний электронов (стационарные орбиты). Электромагнитные волны, движущиеся по стационарным орбитам атома, не излучаются, не поглощаются.
Второй постулат: атом только тогда излучает или поглощает порцию энергии, когда электрон переходит из одного стационарного состояния в другое.
Третий постулат? Электрон движется вокруг ядра по таким круговым стационарным орбитам, на которых в момент импульса электрона постоянная Планка полностью уподобляется относительной 2p: .
где m, n, r – соответственно масса электрона, скорость и радиус стационарной орбиты, по которой он движется, n=1,2,3… – целые числа.
Эти постулаты заложили начало новому периоду в изучении свойств и строения атома.
Первый постулат показал ограниченность классической физики, а в особых случаях неприемлемость ее законов к стационарным состояниям. Не так легко согласиться с идеей о излучении энергии электронами на определенно отобранных орбитах. В эту же минуту возникает вопрос: «Почему?» Однако в связи с тем, что этот постулат был адекватен результатам экспериментов, физики вынуждены были его принять. Из второго постулата вытекает вывод о том, что энергия атома излучается порциями. Переход электрона с одной орбиты на другую обязательно сопровождается целыми числами энергетических квантов. Так, состояние электронов в атоме характеризуется 4 квантовыми числами – главное, орбитальное, магнитное и орбитальное квантовое число.
Главное квантовое число (n) определяет энергию электрона в областях ядра, в сложных атомах порядковый номер слоя электронов. Орбитальное квантовое число (l) характеризует коррективы, привносимые в энергию атома одновременным движением атомов. Спиновое квантовое число (s) определяет специальный механический момент, характеризующий вращательное движение электронов.
Рекомендуем скачать другие рефераты по теме: инновационный менеджмент, курсовая работа по менеджменту.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата