Рефераты | Биология и химия | Влияние природы углеродных наполнителей на свойства и эксплуатационные характеристики обожженных анодов | страница реферата 3 | Большая Энциклопедия Рефератов от А до Я
Большая Энциклопедия Рефератов от А до Я
  • Рефераты, курсовые, шпаргалки, сочинения, изложения
  • Дипломы, диссертации, решебники, рассказы, тезисы
  • Конспекты, отчеты, доклады, контрольные работы

  • Зола

    0,6

    0,2

    0,4

    0,6

    0,3

    0,1

    изучения ее состава. В электролитическом способе получения алюминия наиболее вредными примесями являются железо, кремний, ванадий и сера. Первые три при электролизе полностью переходят в металл, загрязняя его.

    Вредное влияние серы связано с ее окислением до сернистого ангидрида, который взаимодействует с металлическими конструкциями электролизера. Образующаяся окалина попадает в расплав, загрязняя алюминий железом. Кроме того, сера накапливается в растворах газоочистки (при «мокром» способе очистки газов) и требуется дополнительный расход содового раствора для вывода сульфатов из процесса.

    Известно, что натрий является катализатором реакции горения углерода. Большое содержание данного металла приводит к повышенному расходу анодов, что увеличивает себестоимость алюминия. Поэтому содержание натрия в коксе также лимитируется. Отмечается сравнительно высокое содержание натрия в смеси коксов с ИркАЗа и в коксе СПЗ «Сланцы».

    Анализируя полученные данные, можно отметить повышенное содержание железа в смеси коксов с ИркАЗа по сравнению с установленными требованиями, что может быть связано с загрязнением коксов при шихтовке, перевалке и хранении на заводском складе.

    Нефтяные коксы отличаются более высоким содержанием серы и ванадия. Особенно это касается кокса Пермского НПЗ. По содержанию золы все коксы вполне укладываются в требования ТУ 1913-00200992-95. Выделяется только кокс с СПЗ «Сланцы», содержащий золу на верхнем допустимом пределе. Таким образом, с точки зрения химической чистоты пековые коксы не уступают нефтяным, а кокс производства ЮАР даже превосходит их.

    При выборе кокса-наполнителя для производства обожженных анодов, жесткие требования предъявляются не только к химической чистоте. Сырье и технология должны обеспечить, с одной стороны, получение анодов с высокой плотностью и низкими пористостью и реакционной способностью при электролизе, с другой — достаточно высокую механическую прочность и электропроводность анодов.

    Поэтому на втором этапе были исследованы объемно-структурные и электромеханические характеристики коксов. Для стабилизации свойств все коксы (кроме прокаленного пекового кокса производства ЮАР и прокаленного нефтяного кокса СПЗ «Сланцы») прокаливали при температурах 1100—1220 °С: нефтяные коксы — до действительной плотности (а?Дейст) 2,02, 2,05, 2,07 г/см3; смесь пековых коксов с ИркАЗа — до 1,98, 2,00, 2,02 г/см3. Полученные результаты представлены на рис. 1. На графиках не приведены характеристики по коксу ЮАР, но все показатели по этому коксу превосходят аналогичные для смеси коксов с ИркАЗа.

    У всех коксов с повышением температуры прокаливания отмечено закономерное повышение объемной плотности и насыпного веса. Также было ожидаемым уменьшение величины удельного электросопротивления с ростом температуры их обработки. Обращает на себя внимание более высокая прочность пековых коксов.

    Рефераты | Биология и химия | Влияние природы углеродных наполнителей на свойства и эксплуатационные характеристики обожженных анодов

    Рис. 1. Зависимость свойств кокса от действительной плотности:

    а — удельное электросопротивления (УЭС), мкОм • м; б — коэффициент прочности, отн. ед; в — насыпной вес, г/см3; г — общая пористость, %; 1 —кокс Пермского НПЗ, 2 — кокс Ангарского НПЗ, 3 — кокс СПЗ «Сланцы», 4 — кокс ИркАЗ

    На основании результатов исследований можно сделать вывод, что пековые коксы имеют более плотную структуру и превосходят нефтяные по показателям объемного и насыпного весов и прочности при близких значениях электропроводности.

    Также можно отметить специфичные свойства нефтяного кокса, прокаленного на СПЗ «Сланцы», который при одинаковой с нефтяными коксами действительной плотности имеет похожие с пековыми коксами объемно-структурные характеристики. Вероятно, это объясняется свойствами коксов, которые шихтуются перед прокаливанием, и особенностями технологии процесса прокалки кокса в ретортных печах.

    Для технологии производства обожженных анодов, как и для других видов прессованной углеродной продукции, очень важным является правильный подбор упругих и пластических свойств кокса-наполнителя. Данные свойства характеризуются коэффициентом упругого расширения (Кур) и коэффициентом релаксации (Крел). Методика и устройство для определения коэффициентов разработана А. Ф. Красюковым [3].

    Известно, что чем выше способность материала к релаксации (пластичность), тем он лучше уплотняется без разрушения частиц при наложении давления. В то же время, чем больше упругое расширение кокса, тем в большей степени спрессованный материал стремится вернуться в исходное состояние после снятия нагрузки. Понятно, что с повышением Кур кокса увеличивается вероятность расслоения образца и образования трещин.

    Учитывая разнонаправленность изменения Крел и Кур при наложении давления прессования, А.Ф. Красюков ввел понятие коэффициента прессовой добротности (Адц), характеризующего преобладание пластических свойств над упругими.

    На третьем этапе, используя указанный подход к оценке технологических свойств наполнителей, проводили изучение прессовых характеристик прокаленных коксов (фракция 1,0—1,5 мм) в интервале давления прессования 200—800 кг/см2. При увеличении поверхности шлифов коксов в 1000 раз также изучалась их структура.

    В интервале давления от 200 до 600 кг/см2 (см. рис. 2) происходит значительное снижение Кпд на основании чего можно сделать вывод, что в данном интервале давление прессования может влиять на физические свойства «зеленых» и обожженных образцов. При более высоком давлении от 600 до 800 кг/см2 зависимости становятся более монотонными и значения отличаются друг от друга незначительно. В указанном интервале начинает происходить раздавливание материала, вследствие этого нарушается начальный фракционный состав шихты и возникают предпосылки к возникновению трещин в «зеленых» образцах за счет сил упругого расширения после окончания прессования.


    Рекомендуем скачать другие рефераты по теме: скачать сочинение, банк бесплатных рефератов.



    Предыдущая страница реферата | 1  2  3  4 |




    Поделитесь этой записью или добавьте в закладки

       




    Категории:



    Разделы сайта




    •