Роль углеводов и жиров в повышении морозоустойчивости растений
Категория реферата: Рефераты по биологии
Теги реферата: шпаргалки по математике, сочинение
Добавил(а) на сайт: Гурский.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Закалка озимых и древесных пород проходит в два этапа. На первом этапе
в зимующих органах идёт накопление сахаров, обусловленное дневными
(+10...+15єС) и ночными (около 0єС) температурами. В этих условиях идущий
днём процесс фотосинтеза даёт большое количество сахаров, при низких ночных
температурах они не успевают тратиться на дыхание и рост, а откладываются
про запас. Второй этап закаливания протекает в растениях при слабых морозах
(-2...-5єС), во время которых организм приобретает полную морозостойкость. К этому моменту фотосинтез уже прекращается, а в клетках и тканях растений завершается целый ряд своеобразных биохимических и биофизических процессов. В итоге заметно повышается осмотическое давление, усиливается вязкость цитоплазмы, в клеточном соке увеличивается количество дубильных веществ и антоциана. Большая часть запасного крахмала превращается вновь в сахара. Интересно, что с наступлением зимы в клетках тканей коры у многих хвойных растений наряду с сахарозой, глюкозой и фруктозой в значительном количестве имеются и такие сахара, как стахиоза и рафиноза, которые летом там практически отсутствуют.
Как показали исследования, закаливание растений во многом зависит от накопления запасных питательных веществ. Причем в надземных органах растений обычно откладываются сахара и масла, а в подземных органах - крахмал. Накопленные вещества растение использует в течение зимы на дыхание. За счет этих же веществ осуществляется рост растений в начале весны.
Большой запас сахара, главным образом глюкозы, содержащейся в зимующих органах растений, привёл учёных к выводу о его защитной роли, проявляющейся не только в увеличении осмотического давления в клетках, но и в специфическом химическом действии его на цитоплазму, благодаря чему под влиянием мороза не происходит коагуляции. Кроме того, у растений наблюдается большое накопление масла во внутренних слоях древесины, оно повышает устойчивость организмов к сильным морозам. Масло прежде всего вытесняет воду из вакуолей и этим предохраняет её от замерзания. Далее, откладываясь в самой цитоплазме, делает её несравненно более стойкой к морозу и другим неблагоприятным воздействиям зимнего периода. Такую же роль играют и другие откладываемые в вакуоли и протоплазме вещества - крахмал и белки. Все они непосредственно защищают цитоплазму от мороза.
Однако морозостойкость растений нельзя объяснить только накоплением в
их клетках запасных питательных веществ. Исследования показали, что осенью
в процессе закаливания растения претерпевают и другие изменения. Особенно
большое значение имеет повышение водоудерживающей способности цитоплазмы.
Вода в ней становится как бы связанной. В таком состоянии она трудно
испаряется и замерзает, трудно отжимается под давлением, отличается большой
плотностью и утрачивает в значительной мере свойство растворителя. Вода
становится кристаллической по структуре, хотя и сохраняет жидкое состояние.
Между частичками цитоплазмы и водой устанавливается единство структуры. В
известной мере вода входит в состав макромолекул белков и нуклеиновых
кислот. Заморозить её в таком состоянии, то есть перевести в твёрдое тело, практически невозможно. Такого рода изменения водных свойств цитоплазмы
особенно важны, именно они во многом определяют морозостойкость растений.
Морозостойкость зависит и от того, как растения провели вегетационный
период. Например, плодовые деревья, перенёсшие летом засуху, будут менее
морозостойки, чем деревья, выросшие в условиях обильного полива.
Позднелетняя подкормка также снижает морозостойкость.
Одна только способность переносить большие морозы ещё не позволяет
растениям существовать в условиях умеренного холодного пояса и в
приполярных районах. Значительно важнее зимостойкая способность видов, то
есть способность переживать в течение длительного времени ( иногда 8-9
месяцев в году) не только действие низких температур, но и выпревание, вымокание, действие ледяной корки, а также частые смены температуры воздуха
- то оттепель, то замораживание и многое другое.
Растения по-разному приспосабливаются к переживанию этого периода.
Одни переносят зиму в состоянии органического и вынужденного покоя. У
других, помимо физиологических, появляется целый ряд анатомо-
морфологических особенностей: распластанные по земле стебли и листья, горизонтальное нарастание побегов, подземное расположение узлов кущения и
корневых шеек, листопадность ( а у вечнозелёных - способность листьев
скручиваться и целый ряд других изменений, благодаря которым уменьшается
испаряющая поверхность), развитие мощного слоя пробки, белоствольность и
другие признаки, позволяющие избегать ожогов коры, почечные чешуи, их
тёмная окраска, кожистость - всё это прямо или косвенно помогает растениям
выжить зимой.
Биосинтез углеводов в зелёных растениях.
Физиологические и биохимические процессы в зелёном растении тесно связаны с углеводами. Они составляют 75-80% сухого вещества тела растительного организма и служат основным питательным и скелетным материалами клеток и тканей растения.
Основной орган биосинтеза в растении - лист. Характерная его особенность - сочетание фото- и биосинтезов. В листе происходит трансформация энергии, обмен углеводов, аминокислот, белков, липидов, нуклеиновых кислот, витаминов.
В прорастающих семенах и пробуждающихся почках происходят процессы мобилизации запасных веществ. Наиболее характерная черта этих процессов - распад сложных запасных веществ на более простые. Полисахариды распадаются на моносахариды. Эти реакции происходят с присоединением воды и относятся к типу гидролитических.
Крахмал состоит на 96,1-97,6 % из полисахаридов двух типов - амилозы
и аминопектина, различающихся своими физическими и химическими свойствами.
В крахмале содержится фосфорная кислота (до 0,7%) и некоторые
высокомолекулярные жирные кислоты (пальмитиновая, стеариновая и другие).
Крахмал - основное запасное вещество большинства растений. У прорастающих семян под микроскопом можно наблюдать "разъедание" крахмальных зёрен (см. рис. 1). Это процесс гидролитического распада полисахаридов на моносахариды.
В быту известно явление, когда охлаждённый при 1-2 єС картофель приобретает сладковатый вкус. У картофеля гидролиз крахмала происходит при пониженной температуре, процесс дыхания при этом угнетается, вследствие чего использование сахаров уменьшается. Таким образом, в клубнях происходит односторонний процесс - гидролиз крахмала до гексоз и их накопление.
Мучнистый вкус семян благодаря наличию большого количества крахмала сменяется при прорастании сладковатым вследствие накопления в них глюкозы.
Превращение крахмала в сахар происходит под влиянием фермента амилазы. Более обстоятельное изучение фермента амилазы показало, что это смесь двух ферментов - ?- и ?-амилазы, которые действуют параллельно и расщепляют гигантскую молекулу крахмала на более мелкие молекулы полисахаридов, называемых декстринами, и дисахаридов, назвываемых мальтозы.
Количество амилазы в семени, находящемся в состоянии покоя, незначительно, но с прорастанием с семени оно возрастает. Центром образования амилазы, например, в зёрнах пшеницы или кукурузы является зародыш, в частности его щиток, а также алейроновый слой, окружающий эндосперм. Образующиеся ферменты ?- и ?-амилаза диффундируют в ткани эндосперма и вызывают расщепление крахмала. Осахаривание крахмала в эндосперме идут до конца только в том случае, когда он находится в тесном контакте с молодым побегом, который непрерывно поглощает и использует сахар, образующийся при гидролизе.
Гликозиды - сложные вещества, образующиеся из сахаров (в основном из глюкозы) и одного или нескольких компонентов "несахаров" - агликонов.
К цианогенным гликозидам, содержащим синильную кислоту, относится
вицин семян с некоторых видов вики и фасоли. У белого клевера, сорго
содержится ряд цианогенных гликозидов, токсичных для животных. В растении
картофеля образуются ядовитые для человека и животных гликоалкалоиды -
гликозиды, у которых в качестве агликона входит алкалоидсоланидин. Эти
вещества, обладающие горьким вкусом, называются соланинами и чаконинами. В
картофельном растении клубни, а также стебли содержат меньше
гликоалкалоидов по сравнению с другими органами (молодыми листьями, цветками, ягодами). Наибольшее количество гликоалкалоидов содержат ростки
(4-5 мг % массы сухого вещества). Молодые клубни картофеля содержат около
10 мг % гликоалкалоидов, а зрелые 2-4 мг %. При хранении клубней на свету
количество гликоалкалоидов значительно возрастает, особенно в позеленевших
участках, примыкающих к эпидермису. Установлено, что картофель с
содержанием гликоалкалоидов в количестве 20 мг % и более опасен для
потребления, особенно если клубни варились в кожуре.
Большинство красных, голубых и пурпурных пигментов клеточного сока
листьев лепестков цветков, плодов, корней, стеблей многих растений (
васильков, столовой свёклы, вишни, сливы, смородины, малины и других), относится к группе веществ - антоцианам . Антоцианы - это
гетерогликозиды, образующиеся в растениях в результате взаимодействия
между сахарами и комплексными соединениями антоцианидинами ( агликоны).
Физиологическая роль гликозидов мало изучена, но их образование связано с
физиологической функцией сахаров в растениях; гликозиды считаются также
запасным материалом для синтеза сахаров и связанных с ними комплексов.
Роль углеводов в повышении морозоустойчивости растений.
Морозоустойчивость - способность растений переносить температуру ниже
0єС. Разные растения переносят зимние условия, находясь в различном
состоянии. У одноклеточных растений зимуют семена, нечувствительные к
морозам, у много летних - защищённые слоем земли и снега клубни , луковицы
и корневища, а также надземные древесные стебли. У озимых растений и
древесных пород ткани под воздействием морозов могут промёрзнуть насквозь, однако растения не погибают. У них достаточно высокая морозоустойчивость.
Нечувствительность к морозам достигается физико-химическими изменениями в клетках. В зимующих листьях и других частях растения накапливается много сахара. Сахар является веществом, защищающим белковые соединения от коагуляции при вымораживании, и поэтому его можно назвать защитным. При наличии достаточного количества сахара в клетках повышаются водоудерживающие силы коллоидов протопласта, увеличивается количество прочно связанной и уменьшается содержание свободной воды. Связанная с коллоидами вода при действии низких температур не превращается в лёд. У ряда древесных пород в результате превращения углеводов в древесине накапливаются жиры, которые не замерзают и проявляют защитные действия в зимний период.
Биосинтез липидов.
Рекомендуем скачать другие рефераты по теме: шпаргалки по истории россии, скачать дипломную работу.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата