Аналитические весы
Категория реферата: Рефераты по химии
Теги реферата: контрольная работа 6, конспект
Добавил(а) на сайт: Нусинов.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
СОСТОЯНИЕ ИЗУЧЕННОСТИ ВОПРОСА
Идея создания электронных лабораторных весов аналитичес-
кого класса точности (до 0.0001 г) возникла после посещения нами
презентации Казахстанского представительства фирмы "Metler-Tolledo"
(США-Швецария), проведенной в городе Рудный в мае 2000 года на
базе акционерного общества Соколовско-Сарбайское горно-производ-
ственное объединение (АО ССГПО).
Представленные на ней аналитические электронные лабораторные
весы имели очень высокую стоимость и, по понятным причинам, не мог-
ли быть приобретены нами. У персонала презентующего продукцию этого
всемирно известного производителя весов нам удалось установить толь-
ко то, что измерительный узел представляет собой тензодатчик вы-
сокой точности, стоимость которого составляет 3/4 всего изделия.
Точность - это визитная карточка данной фирмы, так например у
закупленных АО ССГПО железнодорожных весов точность составляет
400 грамм, которая при существующих требованиях стандарта к точ-
ности данного класса весов в 1% представляется просто фантастичес-
кой.
Объем литературных источников по этому вопросу весьма скуден и ограничен, в основном, общими знаниями. Из работы [1] мы выяс- нили, что тензодатчик аналитического класса точности представляет собой объемную конструкцию из шайб сплавов редких и драгоценных металлов, обладающих свойством изменения электрических параметров, например сопротивления, при малейших механических воздействиях на них. Весьма непростыми являются при этом и устройства измере- ния, так как определяемый параметр изменяется не только от меха- нического воздействия, но и от целого ряда других параметров, са- мым определяющим из которых является температура. Мы смогли най- ти только тензорезисторы, изготовленные из меди, которые обладают недостаточной чувствительностью к небольшим изменениям внешнего давления на них, поэтому от этого подхода мы отказались сразу.
Малопривлекательными для изготовления в условиях школы по- казались нам и электронно-механические виды аналитических весов, в которых система противовесов и кодовых шкал с компенсторами [1] просто не могла быть воспроизведена вне лаборатории точной ме- ханики и оптики.
В процессе анализа литературных источников нам пришла идея использования для взвешивания силы взаимодействия магнитного и электрических полей. Так например, если на магните расположить катушку, на которую положено взвешиваемое вещество, то при про- пускании через нее постоянного тока, заранее определенной поляр- ности, вокруг катушки возникает противоположно направленное элек- трическое поле и при определенной величине тока вес вещества бу- дет преодолен и нам остается только выполнить исследование зависи- мости вес - величина электрического тока.
Однако весы данной конструкции имеют один недостаток - не- возможность взвешивания материалов обладающих магнитной индукци- ей, например железных стружек, но список таких материалов незначи- телен и им можно пренебречь.
СТРУКТУРА ПРЕДЛАГАЕМЫХ ЭЛЕКТРОННЫХ АНАЛИТИЧЕСКИХ ВЕСОВ
Структура электронных аналитических весов с магнитно-элек- рическим датчиком веса должна безусловно включать в себя микро- контроллер для обеспечения быстрого подбора значения электричес- кого тока, достаточного для преодоления веса. В настоящее время спектр таких изделий очень широк, но мы выбрали однокристальную электронную вычислительную машину (ОЭВМ) КР1816ВЕ51 [3,4], исхо- дя из следующих соображений:
1) компактность исполнения - практически весь спектр воз- можностей вычислительной машины скомпанован в одной микросхеме;
2) высокое быстродействие - 1000000 операций в секунду;
3) достаточно большой объем внутренней памяти для программы пользователя - 4 кБ;
4) наличие коммуникационного последовательного программи- руемого порта для связи с IBM-совместимым компьютером, что очень важно как с точки зрения отладки программного обеспечения аналити- ческих веов, так и с точки зрения внешнего управления ими, хра- нения и статистической обработки производимых взвешиваний;
5) двухуровенная система обработки прерываний для обслужива- ния событий от шести источников запросов, например поднятие навес- ки;
6) простой ввод/вывод 32-х дискретных сигналов (есть сиг- нал - 5 В, нет сигнала - 0 В);
7) два встроенных таймера для точного отслеживания малых и больших временных интервалов, независимо от действий выполняемых в данный момент программой;
8) достаточно простой Ассемблер с широкими возможностями в области арифметики и логики;
9) наличие в нашем распоряжении компилятора Ассемблера и ком- поновщика программ для автоматизированного создания аппаратно ори- ентированного программного кода;
10) наличие программы-симулятора, имитирующего выполнение команд ОЭВМ КР1816ВЕ51, на IBM-совместимом компьютере и облегчающем поиск ошибок;
11) наличие IBM-совместимого программатора фирмы "Хронос"
(Россия) для прошивки программного кода во внутреннюю память прог-
рамм микросхемы КР1816ВЕ51;
К недостаткам ОЭВМ КР1816ВЕ51 можно отнести недостаточное ко-
личество портов ввода/вывода сигналов, всего 32. Беглый подсчет пот-
ребного количества сигналов показывает, что нам необходимы: а) 21 выходной сигнал для подбора цифрового аналога токового
сигнала, чтобы обеспечить аналитическую точность в диапазоне веса
0...200 г; б) 12 выходных сигналов для вывода значения полученного веса
на табло аналитических весов из семи семисегментных цифробуквенных
светодиодных индикаторов и светодиода десятичной точки; в) 4 входных сигнала управления режимами работы аналитических
весов ("Тара","Однократное взвешивание", "Многократное взвешивание"
и "Температура") г) 2 входных сигнала для датчиков подьема катушки весов и
температуры воздуха; д) входной и выходной сигналы для двухстороннего сопряжения
аналитических весов с IBM-совместимым компьютером; е) выходной сигнал индикации работы аналитических весов.
Таким образом нам недостает, как минимум, 10 сигналов для успешной реализации схемы на выбранной ОЭВМ. Можно было бы пойти по пути установки двух ОЭВМ в одном изделии с разделением функций между ними, но этот подход дорогостоящ и расточителен, поэтому мы решили использовать недорогую микросхему КР580ВВ55А (программирумый параллельный адаптер (ППА) [3]) для расширения адресуемых портов с 32 до 45.
ОЭВМ КР1816ВЕ51 будет передавать данные в 3 порта микросхемы
КР580ВВ55А через один из своих портов (рис. 1), для выбора номера
интересуемого порта и стробирования обращения к ППА необходимы еще
3 вывода. Если запрограммировать микросхему только на вывод, то нет
нужды в подключении к ОЭВМ выводов чтение (RD) и запись (WR) ППА, так как их можно зафиксировать сигналами c блока питания через ре-
зисторы, нормирующие допустимый для микросхемы входной ток.
На выводы 3-х портов КР580ВВ55А (рис. 1), поскольку она бу- дет запрограммированна только на вывод, лучше всего подключить уст- ройство цифроаналогового преобразователя (ЦАП), то есть устройство, преобразующее цифровой код в токовый аналог, например, код 1388h (де- сятичное число 5000) в ток величиной 0,5 А.
Кроме того непосредственно к вводам ОЭВМ (рис. 1) должны быть
подключены: датчик подьема веса (ДП); датчик температуры (ДТ) для
более точного подбора токового аналога в диапазоне рабочих темпера-
тур весов; согласователь интерфейсов (СИ) последовательных портов
ОЭВМ и IBM-совместимого компьютера; коммутатор цепи цифроаналогового
преобразователя (КЦ) для предотвращения негативных последствий от
длительного воздействия сильных токов на низкоомную катушку устрой-
ства взвешивания (УВ); пульт индикации и управления (ПИУ). Более
подробно каждому из них будет посвящен отдельный параграф работы.
Рекомендуем скачать другие рефераты по теме: реферат техника, контрольная работа 2, банк дипломов.
1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата