Химия радиоматериалов, лекции Кораблевой А.А. (ГУАП)
Категория реферата: Рефераты по химии
Теги реферата: доклад по биологии, курсовики скачать бесплатно
Добавил(а) на сайт: Jarnyj.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
2.5 Введение в химию полупроводников
| |металлы |полупроводники (п/п) |диэлектрики |
|? (Ом см) |10-6 – 10-3 |10-4 – 109 |109 – 1019 |
|?Е |0 |0.1 – 4(5) эВ |>5 эВ |
|??/?Т |>0 |Si приборы
работают при более высоких температурах: температура работы Ge = 60-80°С, а температура работы Si =200°С, более того Si самый распространенный элемент
после О => Si находит все большее применение благодаря навым методам его
очитки.
Из элементов V группы при определенных условиях п/п свойства проявляют P,
As, Sb. Однако п/п модификации этих элементов малодоступны, но они являются
важнейшими п/п образующими (GaAs, AlP, InSb). Из элементов VI группа – Se,
Te. Se является важнейшим п/п материалом, п/п образующим элементом, на
основе которого получают селениды металлов. Te самостоятельного применения
не имеет, но теллуриды широко применяются в качестве п/п материалов.
S(сера) – изолятор, хотя она обладает сильно выраженной фотопроводимостью.
S является основой сульфидов (Ag, Cd, Pb). В группе S-Se-Te с увеличением
порядкового номера ?Е уменьшается. III В – единственный1 элементарный п/п, который не применяется: высокая температура плавления, значительная ?Е =
1.58 эВ, распространенность в природе (в 10 раз > Ge); недостаток –
трудность получения в высокой степени чистоты монокристаллов.
2.6 П/п соединения.
Химическая связь в п/п соединениях.
Специальной связи в п/п соединениях нет. Химические связи в п/п
разнообразны, исключается только металлическая связь. Преимущественно связь
ковалентная.
(1) Классификация полупроводниковых соединений.
1) По типу образователя: оксиды, сульфиды, арсениды, фосфиды и т.д.
2) По типу кристаллической решетки: алмазоподобные …
3) По положению в периодической системе.
АIII BV
АII BVI
АI BVII
А2III B3VI
АI BIIIC2VI
А2IBVIIICIVDVI
И т.д.
(2) П/п соединения АIII BV
|АIII |BV | |
|B |N |диэлектрик |
|Al |P | |
| | |полупроводник |
|Ga |As | |
|In |Sb | |
|Te |Bi |металл |
С увеличением (ZA+ZB)/2 наблюдается закономерное измение ?Е и температуры
плавления (из увеличения радиуса атома следует уменьшение прочности
ковалентной связи).
|соединение |энергия к.р. |температура |?Е, эВ |подвижность носителей тока, u |
| | |плавления | | |
| | | | |е |р |
|AlP |190 |2000 |2.42 |– |– |
|GaP |170 |1467 |2.25 |300 |150 |
|InP |150 |1055 |1.28 |6000 |650 |
|AlAs |170 |1700 |2.16 |– |– |
|GaAs |146 |1237 |1.4 |– |– |
|InAs |130 |943 |0.46 |– |– |
|AlSb |160 |1070 |1.6 |– |– |
|GaSb |133 |712 |0.79 |– |– |
|InSb |121 |536 |0.18 |– |– |
|Si |204 |1421 |1.21 |– |– |
|Ge |178 |937 |0.78 |– |– |
АIII BV
Алмазоподобные п/п, изоэлектронные ряды, имеют тетраэдрическую структуру. 3
ковалентные связи + 1 донорно-акцепторная.
|IV |АIII BV |АII BVI |АI BVII |
|Ge |GaAs |ZnSe |CuBr |
|ковалент|3 |2 |1 |
|ная |ковалентные|ковалентные|ковалентная|
|неполярн|+ 1 д-а |+ 2 д-а |+ 3 д-а |
|ая | | | |
|? |
Элементы удаляются друг от друга, следовательно, растет доля ионности связи
и ширина запрещенной зоны, и уменьшается подвижность носителей тока.
|Соединение |Ge |GaAs |ZnSe |CuBr |
|?Е, эВ |0.78 |1.53 |2.6 |2.94 |
(3)
Алмазоподобную структуру имеет большая группа соединений, состоящая из
трех.
АIBIIIC2VI (CuZnS2, CuAlS2)
АIIBIVC2 (CdGeAs2, ZnGeAs2)
4 – и более элементов.
2.7 Реальные кристаллические решетки
Металлическая, атомная и ионная решетки в чистом виде существуют очень
редко. В каждой кристаллической решетке существуют в какой-то мере все
составные части. Электронная плотность решетки ? = С1 ?мет + С2 ?атомн + С3
?ион, где С1 + С2 + С3 = 1 или 100%
ZnS: С1 пренебрежимо мала => ковалентно-ионная связь.
InSb: практически отсутствует ионная доля => ковалентно-металлическая
связь.
NaSb: ионно-металлическая связь.
Закон постоянства состава и закон эквивалентов и кратных отношений, которые
присущи молекулярным соединениям, в твердых телах не реализуется.
Следовательно, твердые тела не имеют постоянства состава. Молекулярные
соединения, которые имеют строго постоянный состав, называются
дальтонидами. Твердые тела, в основном не имеют постоянного состава и
называются бертоллидами. Их состав, а значит и свойства, зависят от способа
получения.
2.8 Нестехиометрические соединения
TiO0.58-1.32 – формульный состав, нет молекулярной массы, а есть формульная
(разный состав => структура и свойства).
NaCl (Na0.999Cl, NaCl0.999) – имеет практически ионную кристаллическую
решетку => является диэлектриком. ВЗ полностью заполнена. Cl S2P6
ЗП – свободная зона натрия Na 3S0
?Е = 8 эВ.
Но обработанный в избытке натрия кристалл NaCl будет иметь n-проводимость.
Все реальные кристаллы имеют дефекты структуры: смещение граней и узлов, наличие примесей. Все нарушения влияют на самые чувствительные свойства – электрические и оптические.
Примеси могут быть трех типов:
1) Образуют разбавленные растворы замещения, когда атом примеси
«замещает» основной атом в узле кристаллической решетки. А для этого примесный атом должен иметь примерно такой радиус, что и основной атом, т.е. быть в периодической системе рядом слева или справа. Если примесный атом находится справа. То это будет донорная примесь, которая содержит избыточные электроны, не участвующие в химической связи. Зоны образуются в результате расщепления электронных уровней при их взаимодействии. Примесные атомы образуют раствор, и друг с другом не взаимодействуют => нет расщепления зон. Если примесный уровень слева, то для образования химической связи на внешнем уровне не хватает электронов => образуются дырки. Примесь акцепторная.
2) Примеси внедрения возникают в том случае если примесный атом, малый по размеры попадает в междоузлие. Он не образует химической связи с соседними атомами, но его электроны могут служить носителями тока, если электроотрицательность примесного атома очень мала. В кристаллической решетке Ge находятся между узлами атомы Li (искажают решетку) – создание n-проводимости. Если попадает Cl, обладающий большой электроотрицательностью, то он захватывает электроны от соседних атомов, образуя дырку.
3) Примеси вычитания – отсутствие стехиометрии. Если катионообразователя
(ZnSe избыток Zn) – возникает n-проводимость; если избыток анионообразователя (Se) – проводимость р-типа.
Т.е. п/п очень чувствительны к наличию примесей. Требуется тщательная
очистка физико-химическими методами: зонная плавка, метод вытягивания по
Чохральскому, транспортные реакции.
2.9 Стеклообразные п/п.
Селениды, теллуриды, сульфиды элементов V группы образуют аморфные
(стеклообразные п/п)
Sb23+Te32-; As23+S32-; As23+Se32-; As25+Se52-;
Для аморфного состояния характерен только ближний порядок, поэтому зонная
теория к ним не применима (она выведена только для кристаллического
состояния), и свойства таких п/п можно объяснить с точки зрения валентной
связи. Их проводимость мало зависит от примесей. Она зависит от размеров
атомов, образующих соединения. С уменьшением радиуса атома п/п свойства
переходят в диэлектрические.
2.10 Органические п/п
В основном органические соединения – диэлектрики (см. ниже). Однако есть большая группа органических п/п. Её особенностью является наличие сопряженных связей:
? ? ? ? ? ?
= С – С = С – С = С – С = С
? ? ?
т.е. есть электроны коллективного пользования, значит вся молекула обладает
свойствами металла и представляет собой одномерный кристалл, а к нему
применима зонная теория. Дискретные уровни p-электронов представляют собой
валентную зону. Энергия активации электронов есть запрещенная зона.
Проводимость внутри молекулы очень велика поскольку p-электроны обладают
высокой подвижностью и небольшой энергией возбуждения.
Жидкий бензол является диэлектриком, т.к. электронам трудно преодолеть
энергетический барьер, связанный с межмолекулярными взаимодействиями.
Если соединить молекулы бензола так как показано на рисунке, то
энергетический барьер уменьшится.
2.11 Диэлектрики
это вещества, которые обладают следующими:
1) Большое удельное сопротивление
? = 1010 - 1020 [Ом/см]
2) E – электрическая прочность или пробивное напряжение [В/см]
3) Диэлектрическая проницаемость ?. В одних случаях она мала: 1, 2, 3… в
других случаях (для конденсаторов) 40, 80 и более.
4) Тангенс угла диэлектрической потери (tg?)
Диэлектрическими свойствами обладают вещества, которые имеют либо
ковалентную решетку, при очень маленьких радиусах атома (C (алмаз)), либо
ионную решетку с большой долей ионности и с малыми дефектами
кристаллической решетки.
Молекулярные кристаллические решетки
Поскольку молекулярные кристаллические решетки в обычных условиях для
неорганических соединений не существует, то речь идет только об
органических веществах.
2.12 Органические диэлектрики
Практически все органические вещества являются диэлектриками. За
исключением рассмотренных соединений с сопряженными связями, но
диэлектрические свойства органических соединений выражены неодинаково, и
зависит это от состава и строения этих соединений.
Различают высоко- и низкочастотные диэлектрики.
? = g*l – дипольный момент
l
если ? = 0 (l = 0), то молекула неполярна, поэтому всё равно как ей
располагаться в электрическом поле, и при измени полярности она ведет себя
индифферентно. Такой диэлектрик называется высокочастотным. Если ? > 0, появляется диполь,и когда полярность быстро меняется, молекула не успевает
ориентироваться, а если между молекулами прочная связь и ориентирование
происходит в “вязкой” среде, происходит разогрев и пробой диэлектрика
[pic] высокочастотный низкочастотный
Если в молекуле отсутствуют сильно электроотрицательные атомы, такие как
O, F, Cl, то связи будут малополярны и молекула в целом тоже будет
малополярна, значит диэлектрик может считаться высокочастотным. В молекуле
могут быть очень электроотрицательные элементы, но они должны быть
симметрично расположены, и, несмотря на большую полярность связи, в
результате их симметричного расположения в целом молекулы будут неполярны и
тоже могут использоваться в токах высокой частоты. Если же имеющиеся
полярные связи не симметричны, то в молекуле наличествует дипольный момент.
Такие соединения не могут быть использованы в качестве диэлектриков высокой
частоты.
Рекомендуем скачать другие рефераты по теме: отчет по практике, курсовая работа по предприятию, сочинение.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата