Исследование совместного электровосстановление гадолиния и криолита в галогенидных расплавах
Категория реферата: Рефераты по химии
Теги реферата: шарарам ответы, работа реферат
Добавил(а) на сайт: Брантов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Образование анионных хлоридных комплексов лантаноидов в расплавах
констатируется также путем изучения ИК – спектров при температуре 400 – 800
?С. при этом хлориды лантаноидов в расплавленной эвтектике LiCl – NaCl –
KCl в области 0,8 – 2,6 µ имеют характеристические полосы поглощения, найденные в расплавах, соответствующих нитратным комплексам.
Соединения типа KLnCl4 существуют в расплаве и в парообразном состоянии, что показано тензометрическими исследованиями и подтверждено масс-спектроскопией.
Интересна работа японских ученых A.Matsuoka и др. [8], в которой при
помощи Раман-спектроскопии и молекулярно-динамического моделирования были
изучены структуры систем GdCl3 – ACl (A – Li, K, Na). В результате найдено, что октаэдрические комплексные анионы GdCl63- не соединены друг с другом в
расплавах с концентрацией GdCl3 менее 25 мол.%, за исключением системы
GdCl3 – LiCl.
В работе [9] исследованы системы GdCl3 – NaCl GdCl3 – KCl. В первом
случае в системе образуется инконгруэнтно плавящееся химическое соединение
Na3GdCl6. Перитектическая точка отвечает 30 % GdCl3 и температуре 486?С. в
случае системы GdCl3 – KCl образуется два конгруэнтно и одно инконгруэнтно
плавящихся соединения. Соединение KGd3 Cl10 плавится конгруэнтно при 580?С.
Соединение K2Gd Cl5 плавится инконгруентно при 542?С. Конгруэнтно
плавящееся соединение K3GdCl6 характеризуется температурой плавления 825?С
и имеет полиморфное превращение при 380?С.
Интересно отметтить работу японских ученых Y.Katayama, R.Hagiwara и
Y.Ito [31], которые исследовали образование оксихлоридов и оксидов РЗЭ в
эвтектическом расплаве LiCl – KCl, содержащем исследуемый РЗЭ (III) и
оксид лития. Отмечено, что когда к расплаву, содержащему 1 мол.% трихлорида
гадолиния добавили 0,5 мол.% хлорида лития, наблюдалось осаждение лишь
GdOCl. Дальнейшее добавление Li2О (~1 мол.%) дает осаждение Gd2O3 и GdOCl.
3. Строение растворов расплава трихлорида гадолиния в хлоридно-фторидных расплавах
Как указывалось в работе [10], при введении в хлоридный расплав, содержащий ионы Gd3+, фторид-иона происходит последовательное замещение
хлорид-иона фторид-ионом во внешней координации. При большом избытке фтора
(более чем десятикратном) формируется чисто фторидный комплекс, т. е.
Происходит полное вытеснение хлора из внешнесферной координации.
Итак, при малых концентрациях фторид-иона имеет место реакция:
GdCl63- + xF- > [GdCl6-xFx]3- + xCl- , то есть при х [GdF6]3- +6Cl- .
Таким образом, в концентрированных по фтору расплавах, где мольное
отношение [F] : [Gd] > 3, преобладающая доля фторидных комплексов
приходится на группировки GdF3, конечно, не нейтральные, а в виде смешанных
фторидно-хлоридных анионов типа GdF3Cl-, GdF3Cl22- и GdF3Cl33-. В
разбавленных по фтору расплавах преобладают группировки GdF2+, а в
промежуточной области, где изотермы по наклону отвечают z = 2 (GdFz) –
группировки GdF2+ также в виде смешанных фторидно-хлоридных ионов типа
GdFCl3 -, GdF2Cl2-, и т. п. [11].
4. Строение гадолинийсодержащих фторидных расплавов
Фториды РЗЭ относятся к наименее растворимым соединениям этой группы
элементов. В расплавах фторидов редкоземельных и щелочных металлов
образуются соли NaLaF4, KСeF4, NaYF4, а также соединения состава M3LnF6 (Ln
– Ce(III), Y, Sm, Gd, Er; M – Na, K, Rb, Cs).
Безводные фторидные комплексы РЗМ с щелочами и щелочноземельными
металлами во внешней сфере изучали в основном при исследованиях систем MF –
LnF3 или MF2 – LnF3. На основании большого экспериментального материала
[12] был предложен эмпирический критерий возможности образования соединений
в системах MF – LnF3 (Тома). Предлагается рассматривать значение отношений
ионных радиусов Ln3+ и М+ или отношение напряженностей полей катионов Ln3+
и М+. При отношении [pic] постулируется невозможность существования
соединений; при 0,71.40 трифториды образуют с MF соединения M3LnF6 [13 -
15].
Соединения состава M3LnF6 плавятся конгруэнтно, тогда как соединения
состава MLnF4 плавятся с разложением. Термическая устойчивость M3LnF6
увеличивается в ряду Na – Cs. В системах фторид цезия – фторид лантаноида
реализуются соединения Cs3LnF6 для всех РЗЭ от церия до лютеция. В системах
RbF-LnF3 соединения состава 3:1 образуются начиная с празеодима, а в
системах КF-LnF3 подобные соединения образуются лишь начиная с самария.
Фториды M3LnF6 можно синтезировать фторированием смеси хлоридов
щелочного металла и РЗЭ1 (1-кроме церия, празеодима, неодима, тербия и
диспрозия) в молярном соотношении 3:1 при температуре 300-400?С при
спекании смеси фторида щелочного металла и трифторида РЗЭ в атмосфере азота
(аргона). Следует отметить, что спекание лучше проводить в течение двух
часов при температуре на 50?С ниже температуры плавления образующегося
комплекса (особенно это относится к рубидий- и цезийсодержащим комплексам).
Применение другого режима синтеза зачастую приводит к загрязнению продукта
из – за взаимодействия с материалом реактора, либо к непомерному увеличению
времени синтеза, что, впрочем, не исключает заметной коррозии реактора.
Структурные данные для фторокомплексов MnLnF3+n не полны. Двойные фториды MLnF4 гексагональны и изоструктурны по всему ряду РЗЭ, либо обладают сходной структурой. Некоторые отличия в симметрии решетки, наблюдающиеся при замещении ионов Nd3+ на ионы других РЗЭ, объясняются частым смещением катионов, находящихся в различных позициях большинство комплексов РЗЭ обладают полиморфизмом.
Кристаллографические характеристики фторокомплексов гадолиния
Таблица 1.1.
|Параметры элементарных ячеек гексафторгадолинидов калия |
|?-K3GdF6 |?-K3GdF6 |?-K3GdF6 |
|Куб.прост|Тетрагональная |Моноклинная пространственная группа Р21/n|
|р.группа |пространственная |(z=2) |
|Fm3m |группа 14/mmm (z=2) | |
|(z=4) | | |
|a0 |a0 |c0 |a0 | b0 |c0 |?0 |
|9,305 |6,580 |9,305 |6,368 |6,520 |9,069 |90?40? |
Лантаноиды во фторидных расплавах образуют устойчивые трехвалентные
комплексы типа MeIMeIIIF4 (MeI - Li, Na, K) и MeI3MeIIIF6 (MeI – K, Rb, Cs,
NH4). Несколько лет назад Тома предсказал, что если отношение радиусов
катионов Ме+/ Ме3+ находятся в интервале 0,77 – 1,4, комплексы типа МеIGdF4
могут существовать, а если Ме+/ Ме3+>1,43, то будет образовываться
конгруэнтно плавящиеся комплексы типа Ме3IGdF6.
Большинство комплексов было идентифицировано в фазовых исследованиях
[13-21] или при совместном сплавлении [22-25] стехиометрических количеств
фторидов, входящих в состав соединений. Большое число равновесных фазовых
диаграмм собрано в опубликованном обзоре Тома [26]. В отдельных случаях
исследуемые фторидные системы были получены фторированием смесей 3:1
(хлорида щелочного металла и галогенида лантаноида) при 300 – 400?С [27];
гидрофторированием смеси фтористого натрия и полуторной окиси лантоноидов
[24] или нагреванием смесей фтористого натрия и двуокиси металла (металл –
церий, празеодим, тербий) при 450 - 650?С в смеси водорода и фтористого
водорода.
Рис.1 Диаграмма состояния системы NaF-GdF3
Для получения полной картины строения фторидных расплавов, содержащих
РЗЭ, в частности гадолиний, исследованы системы фторид натрия – фторид РЗМ
и построены полные фазовые диаграммы в работе [14,15]. На рисунке 1
представлена диаграмма системы NaF – GdF3, где образуются равновесные
комплексы NaGdF4 и Na5Gd9F32. Первый комплекс 1:1 NaGdF4 имеет
гексагональную симметрию при низкой температуре, а при температуре выше
700?С они превращаются в неупорядоченные кубические фазы переменного
состава, подобные флюориту [14]. Верхний предел состава кубических фаз, установленный по показателю преломления, постоянной решетки и данными
фазового перехода, соответствует составу Na5Gd9F32.
Твердые растворы кубической симметрии неустойчивы при температуре
ниже 800 - 830?С, и они при охлаждении переходят в различные продукты, состав которых зависит от состава разлагающихся фаз. Например, при
эквимолярных составах фторидов наблюдается упорядочение и образуется фаза
NaGdF4 с гексагональной симметрией. Из фазы Na5Gd9F32 в системе образуются
гексагональные NaGdF4 и GdF3.
Комплексы систем: фторид калия, рубидия, цезия – трифторид РЗМ
изучены менее подробно. Опубликовано относительно небольшое число сведений
о комплексах, образуемых фторидом калия и трифторидом лантаноидов [22, 25,
28, 29].
Рекомендуем скачать другие рефераты по теме: темы докладов по обж, реферат на тему орган, сочинение ревизор.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата