Коррозия меди в 5М изопропанольных растворах НС1
Категория реферата: Рефераты по химии
Теги реферата: пушкин пушкин пушкин изложение, скачать бесплатно конспекты
Добавил(а) на сайт: Il'kun.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Cu+ + H2O ( CuOH + H+ (19),
2Cu+ + H2O ( Cu2O + 2H+ (20), в результате чего образуются в растворе ярко окрашенные взвеси гидроксида желтого цвета и оксида красного цвета, хорошо наблюдаемые в анодном пространстве визуально.
Известны публикации по изучению анодного растворения меди в
ацетонитриле [[xi]]. Температурно-кинетическим методом и методом
вращающегося дискового электрода установлено, что при содержании в растворе
20 объемных процентов воды процесс анодного растворения меди в
ацетонитрильных растворах Сu(NO3)2 лимитируется подводом окислителя в зону
реакции. С увеличением концентрации воды процесс переходит в область
смешанной кинетики и наблюдается уменьшение скорости травления вследствие
изменения лимитирующих стадий сопряженных реакций растворения меди. Это
связано с тем, что по сравнению с водными растворами, ионы Сu+ в
ацетонитриле обладают более высокой энергией сольватации, что обусловливает их стабилизацию. Увеличение содержания воды приводит к разрушению
сольватов Cu+ с ацетонитрилом, дестабилизации ионов Сu+, в результате чего
процесс травления осложняется.
Коррозия меди в метанольном, н-пропанольном и водно-метанольном растворах Н2SO4, насыщенных кислородом, исследована в [[xii]]. Показано, что растворение протекает по каталитическому механизму так же, как и в водном растворе, при котором кислород восстанавливается в химической реакции ионами Cu+, а медь растворяется за счет сопряженных реакций. Опыты проводились с медью, осажденной на платине, при перемешивании раствора, с концентрацией кислоты (Н2SO4) 0,5 моль/л при t=25 0C.
Судя по экспериментальным данным, предельный катодный ток по кислороду
(iпред) превышает ту же величину в воздухе приблизительно в 5 раз, т. е.
катодный ток по кислороду практически линейно зависит от концентрации О2.
Увеличение перемешивания не влияет на iкорр , но увеличивает iпред по
О2, следовательно, тафелевский участок является кинетическим, а участок
предельного тока - диффузионный.
Лимитирующей стадией восстановления О2, по мнению авторов, является присоединение первого электрона :
О2 + е ® О2- (21), за которым следует ассоциация
О2- + Н+ ® НО2 (22),
Авторами [10] предложен следующий механизм коррозии меди в метанольной сернокислой среде:
Сu+ + O2 ® Cu2+ + O2- (23)
Cu ® Cu+ + e (24)
Cu2+ + e ® Cu+ (25) и далее:
HO2 + Cu+ ® Cu2+ + HO2- (26)
НO2- + H+ ® H2O2 (27)
Н2О2 + Сu+ ® Сu2+ + ОН- + ОН (28)
ОН + Сu+ ® Cu2+ + OH- (29)
OH- + H+ ® H2O (30)
Подтверждением протекания химической реакции наряду с электрохимическим механизмом является тот факт, что измеренная радиометрически эффективная валентность меди, переходящей в раствор, равна 1.
Достаточно подробно изучено электрохимическое и коррозионное поведение
меди в кислых спиртовых хлоридных средах, где комплесообразование меди
особенно заметно [13-17]. В метанольных растворах хлороводорода исследована
[[xiii]] скорость коррозии определялась на неподвижном и вращающемся
дисковом электродах по данным химического анализа коррозионной среды на
медь посредством трилонометрического титрования в присутствии мурексида.
Природа катодного процесса при коррозии меди определяется концентрацией
кислоты и воды. В условно безводных растворах СНС1 = 10-2-10-1 моль/л
растворение меди протекает с кислородной деполяризацией. На это указывает
наличие участка предельного тока по кислороду на катодной поляризационной
кривой, величина которого в пределах ошибки эксперимента не зависит от
СНС1. Повышение содержания НС1 в 10 раз приводит к появлению водородной
деполяризации, чего не наблюдается в водных растворах. Возможность
параллельного протекания водородной поляризации в метаноле, по мнению
авторов [13] связана со снижением перенапряжения водорода на меди и
разблагораживанием металла в спирте (по сравнению с водными растворами).
Введение воды приводит к снижению iпред. При содержании 10 мас.% Н2О за счет сдвига равновесия вправо
СН3+ + Н2О ( Н3О+ + СН3ОН (31)
носителями кислотных свойств являются протоны в форме ионов гидроксония.
Одновременно повышается перенапряжение водорода и коррозия протекает с
кислородной деполяризацией.
По данным кулонометрических измерений медь переходит в раствор с эффективной валентностью (Zэф), близкой к 1 независимо от величины ионной силы раствора, скорости вращения диска (() и потенциала электрода. Это подтверждается и сопоставлением кинетики анодного процесса по поляризационным кривым и химическому анализу раствора. Введение двухзарядных ионов меди в виде СuC12 снижает Zэф до 0,6-0,8. Одновременно существенно возрастает ток саморастворения металла и величина предельного тока. Увеличивается равновесный потенциал, разряд ионов водорода становится невозможным, одновременно появляется дополнительная катодная реакция восстановления Сu2+ до ионов Cu+ (12), т.к. однозарядные ионы в хлоридных метанольных растворах, видимо, значительно стабильнее двухзарядных.
Скорость коррозии меди понижается с увеличением содержания воды.
Хлороводород оказывает обратное действие. Величины скорости коррозии в 10-
20 раз меньше соответствующих предельных токов катодных поляризационных
кривых. Следовательно, растворение определяется кинетическими факторами и
не связано с транспортными ограничениями подвода деполяризатора.
Скорость коррозии меди значительно возрастает с увеличением
концентрации хлорной меди, с порядком близким к 1. Одновременно предельный
ток также растет с порядком 0,9. Однако iкорр ( iпред, т.е в присутствии
Сu2+ скорость коррозии меди больше таковой, рассчитанной при протекании ее
на предельном токе. Следовательно, по мнению авторов [13], имеет место
параллельная реакция, видимо, неэлектрохимической природы - реакция
репропорционорования (10). Последнее удовлетворительно объясняет и меньшую
величину эффективной валентности в присутствии CuC12.
Рекомендуем скачать другие рефераты по теме: реферат отношения, контрольные бесплатно, шпаргалки по математике.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата