Полимеры
Категория реферата: Рефераты по химии
Теги реферата: контрольные 2 класс 2 четверть, детские рефераты
Добавил(а) на сайт: Устюжанин.
1 2 3 | Следующая страница реферата
Историческая справка.
Термин “полимерия” был введен в науку И.Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.
Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами”). Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол),
Химия полимеров возникла только в связи с созданием А.М.Бутлеровым теории химического строения. А.М.Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г.Бушарда, У.Тилден, немецкий учёный К Гарриес, И.Л.Кондаков, С.В.Лебедев и другие). В 30-х годов было доказано существование свободнорадикального и ионного механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У.Карозерса.
С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров. Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря не ковалентным связям (теория “малых блоков”). Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г.Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.
Полимеры - химические соединения с высокой мол. массой (от нескольких
тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из
большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и
(или) координационных валентностей.
Классификация.
По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами (например, поливинилхлорид, поликапроамид, целлюлоза).
Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.
Полимеры, макромолекулы которых содержат несколько типов мономерных
звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа
образуют достаточно длинные непрерывные последовательности, сменяющие друг
друга в пределах макромолекулы, называются блоксополимерами. К внутренним
(неконцевым) звеньям макромолекулы одного химического строения могут быть
присоединены одна или несколько цепей другого строения. Такие сополимеры
называются привитыми.
Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.
В зависимости от состава основной (главной) цепи полимеры, делят на:
гетероцепные, в основной цепи которых содержатся атомы различных
элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных
полимеров наиболее распространены карбоцепные полимеры, главные цепи
которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров -
полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевиноформальдегидные смолы, белки, некоторые кремнийорганические
полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами
содержат атомы не органогенных элементов, называются элементоорганическими.
Отдельную группу полимеров образуют неорганические полимеры, например
пластическая сера, полифосфонитрилхлорид.
Свойства и важнейшие характеристики.
Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавкие и неспособны к высокоэластичным деформациям.
Полимеры могут существовать в кристаллическом и аморфном состояниях.
Необходимое условие кристаллизации - регулярность достаточно длинных
участков макромолекулы. В кристаллических полимерах возможно возникновение
разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов, тип которых во многом определяет свойства полимерного
материала. Надмолекулярные структуры в незакристаллизованных (аморфных)
полимерах менее выражены, чем в кристаллических.
Незакристаллизованные полимеры могут находиться в трех физических
состояниях: стеклообразном, высокоэластичном и вязко текучем. Полимеры с
низкой (ниже комнатной) температурой перехода из стеклообразного в
высокоэластичное состояние называются эластомерами, с высокой - пластиками.
В зависимости от химического состава, строения и взаимного расположения
макромолекул свойства полимеры могут меняться в очень широких пределах.
Так, 1,4.-цисполибутадиен, построенный из гибких углеводородных цепей, при
температуре около 20 °С - эластичный материал, который при температуре -60
°С переходит в стеклообразное состояние; полиметилметакрилат, построенный
из более жестких цепей, при температуре около 20 °С - твердый
стеклообразный продукт, переходящий в высокоэластичное состояние лишь при
100 °С. Целлюлоза - полимер с очень жесткими цепями, соединенными
межмолекулярными водородными связями, вообще не может существовать в
высокоэластичном состоянии до температуры ее разложения. Большие
различия в свойствах полимеров могут наблюдаться даже в том случае, если
различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол - кристаллическое вещество с температурой
плавления около 235 °С, а нестереорегулярный вообще не способен
кристаллизоваться, и размягчается при температуре около 80 °С.
Полимеры могут вступать в следующие основные типы реакций:
образование химических связей между макромолекулами (так называемое
сшивание), например при вулканизации каучуков, дублении кожи; распад
макромолекул на отдельные, более короткие фрагменты, реакции боковых
функциональных групп полимеров с низкомолекулярными веществами, не
затрагивающие основную цепь (так называемые полимераналогичные
превращения); внутримолекулярные реакции, протекающие между функциональными
группами одной макромолекулы, например внутримолекулярная циклизация.
Сшивание часто протекает одновременно с деструкцией. Примером
полимераналогичных превращений может служить омыление поливтилацетата, приводящее к образованию поливинилового спирта. Скорость реакций полимеров
с низкомолекулярными веществами часто лимитируется скоростью диффузии
последних в фазу полимера. Наиболее явно это проявляется в случае сшитых
полимеров. Скорость взаимодействия макромолекул с низкомолекулярными
веществами часто существенно зависит от природы и расположения соседних
звеньев относительно реагирующего звена. Это же относится и к
внутримолекулярным реакциям между функциональными группами, принадлежащими
одной цепи.
Некоторые свойства полимеров, например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимер из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.
Важнейшие характеристики полимеров - химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвленности и гибкости макромолекул, стереорегулярность и другие. Свойства полимеров существенно зависят от этих характеристик.
Получение.
Природные полимеры образуются в процессе биосинтеза в клетках живых
организмов. С помощью экстракции, фракционного осаждения и других методов
они могут быть выделены из растительного и животного сырья. Синтетические
полимеры получают полимеризацией и поликонденсацией. Карбоцепные полимеры
обычно синтезируют полимеризацией мономеров с одной или несколькими
кратными углеродными связями или мономеров, содержащих неустойчивые
карбоциклические группировки (например, из циклопропана и его производных),
Гетероцепные полимеры получают поликонденсацией, а также полимеризацией
мономеров, содержащих кратные связи углеродоэлемента (например, С=О, С=N,
N=С=О) или непрочные гетероциклические группировки.
Полимеры в сельском хозяйстве
Сегодня можно говорить, по меньшей мере, о четырех основных
направлениях использования полимерных материалов в сельском хозяйстве. И в
отечественной и в мировой практике первое место принадлежит пленкам.
Благодаря применению мульчирующей перфорированной пленки на полях
урожайность некоторых культур повышается до 30%, а сроки созревания
ускоряются на 10-14 дней. Использование полиэтиленовой пленки для
гидроизоляции создаваемых водохранилищ обеспечивает существенное снижение
потерь запасаемой влаги. Укрытие пленкой сенажа, силоса, грубых кормов
обеспечивает их лучшую сохранность даже в неблагоприятных погодных
условиях. Но главная область использования пленочных полимерных материалов
в сельском хозяйстве - строительство и эксплуатация пленочных теплиц. В
настоящее время стало технически возможным выпускать полотнища пленки
шириной до 16 м, а это позволяет строить пленочные теплицы шириной в
основании до 7,5 и длиной до 200 м. В таких теплицах можно все
сельскохозяйственные работы проводить механизированно; более того, эти
теплицы позволяют выращивать продукцию круглогодично. В холодное время
теплицы обогреваются опять-таки с помощью полимерных труб, заложенных в
почву на глубину 60-70 см.
С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, не пластифицированного поливинилхлорида и в меньшей мере полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.
Другая область широкого применения полимерных материалов в сельском хозяйстве - мелиорация. Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, например, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб, особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем.
Рекомендуем скачать другие рефераты по теме: курсовые, реферат финансовый, культурология как наука.
1 2 3 | Следующая страница реферата