Основные принципы бухгалтерского учета (GAAP) в западных странах
Категория реферата: Рефераты по бухгалтерскому учету и аудиту
Теги реферата: российская федерация реферат, реферат бесплатно без регистрации
Добавил(а) на сайт: Камкин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
C0
45(
0 y y
-C0
Рис.6 Графики функций потребления и
сбережения от дохода.
Графически функция сбережений строится путем вертикального вычитания графика функции потребления из графика дохода, образующего угол в 45( с линией абсцисс (рис.6). При уу0, часть располагаемого дохода сберегается.
2.5. Неоклассический вариант.
При построении всех рассмотренных до сих пор разновидностей функции потребления использовались две общие предпосылки:
1) доход домашних хозяйств является экзогенной величиной;
2) доля потребления в доходе определяется на основе привычек, традиций, психологических склонностей экономических субъектов.
Экономисты классической школы и современные неоклассики используют принципиально иной методологический подход при построении функции потребления. В концепции классической школы доход является для домашних хозяйств эндогенным параметром. Экономический субъект сам определяет, какова будет величина его дохода, путем распределения календарного времени на рабочее и свободное, исходя из критерия максимизации полезности.
Пусть функция полезности субъекта задается уравнением:
U=( yF,
при F=T - N и y = wN + П, где T, F, N- соответственно календарное, свободное и рабочее время; w - реальная ставка заработной платы; П - реальный доход от имущества.
Составим функцию Лагранжа: L =(yF + ( (w (T-F) + П - y) .
Она достигает максимума при 1) (L/(y=0.5U/y - (=0;
2) (L/(F=0.5U/F - (w=0;
3) (L/((=w(T - F) + П-y=0.
Из 1) и 2) следует, что y=Fw; подставим это значение y в 3):
wT-wF+П-Fw=0 ( 2wN=Tw-П; N*=T/2-П/2w.
Столько времени домашнее хозяйство посвятит труду; это при сложившейся оплате труда и заданной доходности имущества определит его доход.
Графическое решение задачи максимизации полезности иллюстрирует рис.7, на котором функция полезности представлена семейством кривых безразличия U1-U3. Они имеют положительный наклон и выпуклы к оси абсцисс, так как для сохранения достигнутого уровня полезности каждый дополнительный час труда должен компенсироваться все возрастающим доходом. Индивидуум стремится достичь более высокой кривой безразличия, но его возможности ограничены бюджетным уравнением y = WN + П, которое графически представлено лучом ПЕ. Точка его касания с одной из кривых безразличия определит как величину дохода индивидуума, так и объем предлагаемого им труда.
у U2
U3
Рекомендуем скачать другие рефераты по теме: отчет по практике, рассказы.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата