Genetic Engineering
Категория реферата: Рефераты по экологии
Теги реферата: база рефератов, реферат влияние
Добавил(а) на сайт: Максудов.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Imprecise Technology—A genetic engineer moves genes from one organism to
another. A gene can be cut precisely from the DNA of an organism, but the
insertion into the DNA of the target organism is basically random. As a
consequence, there is a risk that it may disrupt the functioning of other
genes essential to the life of that organism. (Bergelson 1998)
Side Effects—Genetic engineering is like performing heart surgery with a
shovel. Scientists do not yet understand living systems completely enough
to perform DNA surgery without creating mutations which could be harmful to
the environment and our health. They are experimenting with very delicate, yet powerful forces of nature, without full knowledge of the repercussions.
(Washington Times 1997)
Widespread Crop Failure—Genetic engineers intend to profit by patenting
genetically engineered seeds. This means that, when a farmer plants
genetically engineered seeds, all the seeds have identical genetic
structure. As a result, if a fungus, a virus, or a pest develops which can
attack this particular crop, there could be widespread crop failure.
(Robinson 1996)
Threatens Our Entire Food Supply—Insects, birds, and wind can carry genetically altered seeds into neighboring fields and beyond. Pollen from transgenic plants can cross-pollinate with genetically natural crops and wild relatives. All crops, organic and non-organic, are vulnerable to contamination from cross-pollinatation. (Emberlin 1999)
Health Hazards
Here are the some examples of the potential adverse effects of genetically
engineered organisms may have on human health. Most of these examples are
associated with the growth and consumption of genetically engineered crops.
Different risks would be associated with genetically engineered animals
and, like the risks associated with plants, would depend largely on the new
traits introduced into the organism.
New Allergens in the Food Supply
Transgenic crops could bring new allergens into foods that sensitive
individuals would not know to avoid. An example is transferring the gene
for one of the many allergenic proteins found in milk into vegetables like
carrots. Mothers who know to avoid giving their sensitive children milk
would not know to avoid giving them transgenic carrots containing milk
proteins. The problem is unique to genetic engineering because it alone can
transfer proteins across species boundaries into completely unrelated
organisms.
Genetic engineering routinely moves proteins into the food supply from
organisms that have never been consumed as foods. Some of those proteins
could be food allergens, since virtually all known food allergens are
proteins. Recent research substantiates concerns about genetic engineering
rendering previously safe foods allergenic. A study by scientists at the
University of Nebraska shows that soybeans genetically engineered to
contain Brazil-nut proteins cause reactions in individuals allergic to
Brazil nuts.
Scientists have limited ability to predict whether a particular protein
will be a food allergen, if consumed by humans. The only sure way to
determine whether protein will be an allergen is through experience. Thus
importing proteins, particularly from nonfood sources, is a gamble with
respect to their allergenicity.
Antibiotic Resistance
Genetic engineering often uses genes for antibiotic resistance as
"selectable markers." Early in the engineering process, these markers help
select cells that have taken up foreign genes. Although they have no
further use, the genes continue to be expressed in plant tissues. Most
genetically engineered plant foods carry fully functioning antibiotic-
resistance genes.
The presence of antibiotic-resistance genes in foods could have two harmful
effects. First, eating these foods could reduce the effectiveness of
antibiotics to fight disease when these antibiotics are taken with meals.
Antibiotic-resistance genes produce enzymes that can degrade antibiotics.
If a tomato with an antibiotic-resistance gene is eaten at the same time as
an antibiotic, it could destroy the antibiotic in the stomach.
Second, the resistance genes could be transferred to human or animal
pathogens, making them impervious to antibiotics. If transfer were to
occur, it could aggravate the already serious health problem of antibiotic-
resistant disease organisms. Although unmediated transfers of genetic
material from plants to bacteria are highly unlikely, any possibility that
they may occur requires careful scrutiny in light of the seriousness of
antibiotic resistance.
In addition, the widespread presence of antibiotic-resistance genes in
engineered food suggests that as the number of genetically engineered
products grows, the effects of antibiotic resistance should be analyzed
cumulatively across the food supply.
Production of New Toxins
Many organisms have the ability to produce toxic substances. For plants, such substances help to defend stationary organisms from the many predators in their environment. In some cases, plants contain inactive pathways leading to toxic substances. Addition of new genetic material through genetic engineering could reactivate these inactive pathways or otherwise increase the levels of toxic substances within the plants. This could happen, for example, if the on/off signals associated with the introduced gene were located on the genome in places where they could turn on the previously inactive genes.
Concentration of Toxic Metals
Some of the new genes being added to crops can remove heavy metals like
mercury from the soil and concentrate them in the plant tissue. The purpose
of creating such crops is to make possible the use of municipal sludge as
fertilizer. Sludge contains useful plant nutrients, but often cannot be
used as fertilizer because it is contaminated with toxic heavy metals. The
idea is to engineer plants to remove and sequester those metals in inedible
parts of plants. In a tomato, for example, the metals would be sequestered
in the roots; in potatoes in the leaves. Turning on the genes in only some
parts of the plants requires the use of genetic on/off switches that turn
on only in specific tissues, like leaves.
Such products pose risks of contaminating foods with high levels of toxic
metals if the on/off switches are not completely turned off in edible
tissues. There are also environmental risks associated with the handling
and disposal of the metal-contaminated parts of plants after harvesting.
Enhancement of the Environment for Toxic Fungi
Although for the most part health risks are the result of the genetic material newly added to organisms, it is also possible for the removal of genes and gene products to cause problems. For example, genetic engineering might be used to produce decaffeinated coffee beans by deleting or turning off genes associated with caffeine production. But caffeine helps protect coffee beans against fungi. Beans that are unable to produce caffeine might be coated with fungi, which can produce toxins. Fungal toxins, such as aflatoxin, are potent human toxins that can remain active through processes of food preparation.
No Long-Term Safety Testing
Genetic engineering uses material from organisms that have never been part
of the human food supply to change the fundamental nature of the food we
eat. Without long-term testing no one knows if these foods are safe.
Decreased Nutritional Value
Transgenic foods may mislead consumers with counterfeit freshness. A
luscious-looking, bright red genetically engineered tomato could be several
weeks old and of little nutritional worth.
Problems Cannot Be Traced
Without labels, our public health agencies are powerless to trace problems
of any kind back to their source. The potential for tragedy is staggering.
Side Effects can Kill
37 people died, 1500 were partially paralyzed, and 5000 more were temporarily disabled by a syndrome that was finally linked to tryptophan made by genetically-engineered bacteria.
Unknown Harms
As with any new technology, the full set of risks associated with genetic engineering have almost certainly not been identified. The ability to imagine what might go wrong with a technology is limited by the currently incomplete understanding of physiology, genetics, and nutrition.
Potential Environmental Harms
Increased Weediness
Рекомендуем скачать другие рефераты по теме: реферат на тему здоровье, мир докладов.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата