Научно-технический прогресс и проблемы цивилизации (радиоактивность)
Категория реферата: Рефераты по экологии
Теги реферата: тесты онлайн, курсовые работы
Добавил(а) на сайт: Ioann.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Рис.1. Иллюстрация к оценке значения максимально приемливого риска
Каждое сообщество в меру своего понимания и возможностей стремится обеспечить достойный уровень существования своим согражданам. Одним из требований к достижению поставленной цели является обеспечение безопасности в процессе трудовой деятельности и повседневной жизни. Эффективность управления безопасностью в конечном итоге характеризуется состоянием общественного здоровья. В качестве количественных критериев предложено [Кузьмин, 1990: 415-420] рассматривать среднюю продолжительность предстоящей жизни (TL.E) и общий риск смертности (RS) (рис. 2). Повышение безопасности (снижение уровня риска смертности RS) - один из ведущих мотивов деятельности людей.
Рис.2. Модель управления безопасностью
С развитием цивилизации риск смерти определяется уже не только природно-экологическими факторами, но и уровнем развития экономики и социальными отношениями в обществе. Наибольший уровень безопасности (т. е. наибольшая величина TL.E или наименьший RS) достигнут в наиболее промышленно развитых странах.
Снижение безопасности может быть связано с пониженным качеством среды обитания человека, что обусловлено недостаточным уровнем развития экономики и несовершенством социальных структур. Это социально-экономический риск Rс.э.
Rс.э єRс.э (CЅM, F, S, P...). Здесь С - материальные ресурсы общества, характеризующие уровень развития экономики. Они складываются из М - материального уровня жизни; F - уровня питания; S - уровня сервиса, P - уровня медицинского обслуживания и других показателей социально-экономического развития.
Однако развитие науки и техники, обусловленное потребностью развития экономики, снижая риск социально-экономический, одновременно привело к появлению новых, техногенных рисков RTech, как для здоровья населения, так и для состояния биосферы в целом.
RTech є RTech (DZЅZ). Здесь Z - уровень опасности, DZ = IZC - экономические затраты на создание и эксплуатацию технических систем безопасности, а IZ - доля таких затрат из общих материальных ресурсов общества C.
Тогда общий риск может быть представлен в виде суммы двух групп рисков:
RS (CЅM, F, S, P..., Z) = Rс.э (C-IZCЅM, F, S, P...) + RTech (IZCЅZ) (рис. 3).
Рис.3. Оптимизация затрат DZ на снижение техногенного риска RTech(1 - RS, 2 - Rс.э, 3 - RTech);
- точка минимума RS;
(І, ІІ, ІІІ) - соответственно области недостаточных, оптимальных и избыточных затрат DZ = IZC
Таким образом, увеличение затрат на снижение техногенных рисков оправдано только до некоторого оптимального уровня, определяемого экономическим состоянием общества. Избыточные расходы на уменьшение RTech приводят к прямо противоположному результату за счет недофинансирования социальной сферы. Если же у страны главным риском оказывается риск внешнего вторжения, то основные средства вкладываются в обороноспособность. Что при этом происходит с социальной сферой, пояснений не требует. Наш народ это знает не понаслышке. Именно так мы победили в ВОВ, именно так был создан ракетно-ядерный щит страны в период холодной войны, именно поэтому нам не хватало средств не только на снижение Rс.э, но и RTech.
Стоит ли удивляться, что в экстремальных условиях оборонные проблемы решались любой ценой, что приводило не только к тяжелым условиям труда, но и к рукотворным чрезвычайным ситуациям, затрагивающим гражданское население. Именно так в первые годы (1949-1951) функционирования ПО "МАЯК" были осуществлены сбросы высокорадиоактивных отходов в р. Теча. По данным ИБРАЭ РАН, среди проживающего на берегах р. Течи населения в начале 50-х годов были зафиксированы клинические симптомы хронической лучевой болезни (первичная диагностика - 940 случаев, уточненный диагноз - менее 100 случаев). Отдаленные эффекты, достоверно установленные для этой же группы населения, - менее 50 случаев дополнительных лейкозов и других онкологических заболеваний. Сходные ситуации реализовывались при проведении ядерных испытаний, мирных подземных ядерных взрывов, запусках ракет и во множестве иных случаев, необязательно напрямую связанных военной проблематикой.
Свой весомый вклад в загрязнение окружающей среды вносили энергетика, химическая промышленность, металлургия, добыча полезных ископаемых, все виды транспорта и многое другое. Огромный резонанс, как в нашей стране, так и во всем мире, имела авария на ЧАЭС (1986). Разрушение реактора, гибель от острой лучевой болезни пожарников, разнос на обширные территории газо-аэрозольных выбросов, эвакуация населения из близлежащих населенных пунктов - все это, объективно, создало в общественном сознании весьма настороженное и негативное отношение ко всем аспектам ядерной энергетики и технологии. Среди населения, проживающего на "Чернобыльском следе", за последующие после аварии 15 лет зафиксировано до 1 000 дополнительных заболеваний раком щитовидной железы, в том числе несколько со смертельным исходом, а также увеличение заболеваемости лейкозами среди участников ликвидации последствий аварии на ЧАЭС ("100 дополнительных случаев).
Негативный фон всегда создавали и создают секретность, закрытость информации, которые плодят невероятные слухи и домыслы. Информация должна быть достоверной и компетентной. Но это предполагает наличие компетентности как у публичных политиков и представителей средств массовой информации, так и у широких кругов населения. Повседневное и неизбежное внедрение в нашу жизнь новых результатов научно-технического прогресса требует повышения образованности, общей культуры и персональной ответственности каждого члена сообщества. В эпоху ядерной энергетики и электроники, не отрицая самых высоких требований к технике, все же высшая ответственность лежит на человеке. Его умение творчески мыслить, глубокие знания, его психологическая готовность к сложным ситуациям (или трагическая неготовность к ним) в критический момент оказываются решающими. Заметим, что значительное число техногенных аварий связано с ошибками персонала.
Последствия этих ошибок, как показывает опыт ЧАЭС, оказываются тем тяжелее, чем более высокоэнергоемки технические агрегаты и устройства. По мнению международной экспертизы, "...причиной аварии были совершенно невероятные, как мы считаем, ошибки, допущенные операторами АЭС" [Правда, 14 апр. 1987]. Наиболее тяжелые последствия для всего сообщества в целом несут ошибки, совершаемые в верхних структурах управления, особенно если они замешаны на недостаточной компетентности и избыточных политических спекуляциях.
Открытость информации в системах МЧС и Минатома делает первые, но все еще робкие шаги. Однако еще 10 лет назад мы вряд ли могли прочитать в официальных документах такие оценки: "За 30 последних лет в нашей стране от аварий, катастроф и стихийных бедствий пострадало более 10 млн человек, из них погибло более 600 тыс. человек. Суммарный экономический ущерб за этот период сопоставим со среднегодовым валовым внутренним продуктом (ВВП) России… Средний уровень индивидуального риска для населения России на два порядка превышает допустимый уровень, принятый в развитых странах мира, однако условия для анализа и управления риском ЧС, перехода к нормированию допустимого риска и снижению на этой основе индивидуального риска в стране пока еще не созданы" [Акимов, 2000].
Как ни парадоксальным это может показаться некоторым читателям, но именно в атомной отрасли проблемы оценки рисков осознанны наиболее глубоко. Прежде всего здесь принята так называемая беспороговая концепция - во внимание принимаются любые, самые малые дозы ионизирующих излучений, получаемые человеком в результате какой-либо деятельности. Такой консервативный подход изначально предполагает, что оценки радиационного риска делаются с большим запасом прочности, тогда как в реальности риск будет намного меньше.
Данные Научного комитета по действию атомной радиации ООН, накопленные в результате 50 лет медицинских наблюдений за более чем 1 млн человек во всем мире, не выявили вредного воздействия малых доз. Это и неудивительно, ибо любой человек постоянно подвержен действию внешнего облучения от естественного (природного) радиационного фона: космического излучения, излучения радионуклидов земной коры и внутреннего облучения природными радионуклидами (14C, 40K), вовлеченных в биохимические обменные процессы.
Между тем нормирование рисков "более привычных" загрязнений воздуха, воды и почв техногенными химическими выбросами базируется на принципе ПДК (предельно допустимых концентраций), который учитывает токсикологические и иные негативные воздействия. Причем нормируется около 2 000 видов химических загрязнений! Казалось бы, это должно приводить к более низким значениям ПДК. Однако сравнение химических рисков на уровне ПДК и радиационных рисков, связанных с теоретически одинаковой вредностью, показывает, что канцерогенные эффекты многих химических загрязнителей на уровне ПДК на 1- 2 порядка выше. На рис. 4 в качестве примера приведено сопоставление возможностей контроля за содержанием этих двух групп примесей в воздухе.
Рекомендуем скачать другие рефераты по теме: оформление реферата, курсовая работа по менеджменту.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата