Образование оксидов азота
Категория реферата: Рефераты по экологии
Теги реферата: доклад на тему физика, реферат значение
Добавил(а) на сайт: Hlebov.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Топливо
Рефераты | Рефераты по экологии | Образование оксидов азотаОбразование оксидов азотаКатегория реферата: Рефераты по экологии Теги реферата: доклад на тему физика, реферат значение Добавил(а) на сайт: Hlebov. Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата Топливо |
Nг,% |
|
Топочный мазут Сланцевое масло Моторное Дизельное Газотурбинное : лёгкое тяжелое |
0,30-0,50 0,14-0,50 0,12-0,13 0,007-0,01
0,02-0,03 0,07-0,09 |
Топливные NOx образуются из азотосодержащих соединений топлива при продувании его горячим воздухом уже при температуре 900-1000 К. Во всяком случае при температурах 1000-1400 К на начальном участке факела, где происходит воспламенение и горение летучих, обнаруживается значительный выход NOx.
Если бы всё количество азота, содержащегося в топливе, окислялось до NO, то только за счёт топливного азота могло бы образоваться при горении углей до 2-4 г/м^3, при горении мазута до 0,5-1,0 г/м^3. В действительных процессах лишь некоторая часть топливного азота переходит в оксиды азота. Азотосодержащие соединения в углях состоит из аминов, пептидов, аминокислот и др. При нагреве угля в корне факела в зоне выхода летучих обнаруживаются пиридины, хинолины и другие смолистые вещества, аммиак. Значительная часть азотосодержащих соединений, однако, переходит не в эти соединения, а в более прочные - нитриды и др. Однако поскольку для превращения топливного азота, входящего в такие соединения, как пиридины, хинолины, нитробензол, нитроамины, аммиак и некоторые другие, а также на образование NO, требуется меньшая энергия, чем энергия расщепления молекулы N2 , образование существенных количеств NO даже при сравнительно невысоких температурах (1300-1400 С) вполне возможно.
Параллельно описанной выше одной из теорий, проходили и другие изучения на основании которой были сделаны следующие выводы :
Азотосодержащие соединения топлива при горении частично окисляются до NO , и влияние этого процесса на общее содержание оксида азота в продуктах сгорания должно быть учтено.
Влияние топливных NOx на общий выброс оксида азота более существенно при низких температурах процесса горения (Tmax<1800 K), например, при сжигании низкокачественных углей, особенно при сжигании топлива в кипящем слое, при горении мазута, антрацитов и других высокореакционных топлив в крупных топливосжигающих установках влияние топливных NOx меньше.
Образование топливных оксидов азота происходит на начальном участке факела, в области образования “быстрых” NO и до образование “термических” NO.
Степень перехода азотосодержащих соединений топлива в NO уменьшается с увеличением концентрации азота в топливе. Однако абсолютный выход NO при большем содержании азота топлива будет выше.
Степень перехода азотосодержащих соединений топлива в NO быстро нарастает с увеличением коэффициента избытка.
Выход топливных NO сравнительно слабо (особенно по сравнению с термическим NO) зависит от температуры процесса.
Вид азотосодержащего соединения и содержание кислорода в топливе не оказывают влияния на выход топливных NO.
Из способов снижения образования “топливных” NOx наиболее подробно испытаны методы ступенчатого сжигания топлива.
Выводы .
Выше было показано, что оксид азота может образоваться по трём известным механизмам :
“термическому”, в результате диссоциации молекул на атомы и радикалы и последующего окисления молекул азота, он исходит из значительной зависимости выхода NO от температуры, что качественно подтверждается исследованиями на крупных промышленных установках ;
“быстрому”, действующему в начале зоны горению, в основу которого положены реакции с участием радикалов СН, СН2, он определяет минимальный выход NO при горении газового топлива, слабо зависит от температуры и сильно от структуры молекулы топлива ;
“топливному”, зависящему от содержания азота в топливе и избытка воздуха.
Образование диоксида азота в процессах горения.
В течении ряда лет существовало мнение, что оксиды азота образуются в процессах горения в виде монооксида азота и лишь после выхода из дымовой трубы доокисляются в диоксид. Однако при сжигании богатых смесей и при сжигании газовоздушных смесей, по составу близких к стехиометрическим , было зафиксировано в предпламенной зоне до 14 мг/м^3 диоксида азота. Во фронте пламени существенных количеств NO2 обнаружить не удалось, что можно объяснить разложением NO2 в ходе реакции :
Так же не исключены и другие реакции разложения NO2.
Образование NO начинается на расстоянии 1 мм от видимого фронта пламени и достигает максимума во фронте пламени. Отношение NO2/NO уменьшается с повышением температуры. Разложение NO2 происходит за период = 4*10^-3 с на отрезке длинной 1 мм от начальной границы видимого фронта пламени. Зона разложения предпламенной NO2 во фронте пламени совпадает с зоной образования “быстрых” NO, т.е зоной интенсивного нарастания концентраций оксида азота. Эффект разложения NO2 в факеле известен и начинает использовать с целью очистки газов, содержащих высокие концентрации NO2 (отходящие газы химической и других отраслей промышленности).
Процесс доокисления NO в NO2 в пламенах молекулярным кислородом имеет высокую энергию активации реакций и большое время реагирования, поэтому существенных количеств NO2 он дать не может. Из двух наиболее вероятных окислителей NO в NO2 (атомарный кислород и пероксидный радикал - HO2 ) практически значение имеет лишь НО2. Доокисление NO в NO2 происходит за счёт реакции с пероксидным радикалом и имеет место при сильном охлаждении пламен избыточным воздухом и водоохлаждаемыми поверхностями нагрева :
“Время жизни” НО2 составляет от 10^-4 с до (2-3)*10^-2 с. Процесс окисления лимитируется только количеством НO2 , так как концентрация NO существенно выше, чем радикальность НO2 .
В области минимальных температур в зоне горения при содержании NO в продуктах сгорания 100-120 мг/м^3 время реагирования не превышает 10^-4 с , т.е можно считать, что при наличии НO2 NO практически мгновенно переходит в NO2 и только недостаточное количество НO2 препятствует полному доокислению NO в NO2 . Всё количество пероксидного радикала, вынесенного из зоны горения в результате диффузионного процесса в предпламенную и послепламенную области, прореагирует с образованием NO2 .
Критическая температура, ниже которой происходит образование NО2 в пламенах, равна 977 К. Резкое охлаждение продуктов сгорания имеет место в частности, в малых отопительных котлах . Время, необходимое для достижения частицей, находящейся во фронте пламени, наиболее удаленной экранной поверхности, невелико и составляет 0,10-0,12 с, что создает благоприятные условия для образования пероксидных радикалов и способствует образованию значительных количеств диоксида азота в продуктах сгорания топлива в отопительных котлах.
Рекомендуем скачать другие рефераты по теме: акт, банк курсовых.