Оценка радиационной опасности трития от различных ядерных объектов (Предприятия "Маяк", АЭС и ядерных хранилищ)
Категория реферата: Рефераты по экологии
Теги реферата: здоровый образ реферат, allbest
Добавил(а) на сайт: Гремпель.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
-в результате (n, γ)-реакции на ядрах дейтерия, находящегося в теплоносителе- воде;
-при захвате нейтронов ядрами В и Li, находящимися в теплоносителе - воде (при борном регулировании, коррекции водного режима - на АЭС с ВВЭР) и в стержнях регулирования;
-в результате реакции 3Не (п, р)Т в газовом контуре (в газе, заполняющем графитовую кладку) АЭС с РБМК;
в результате (n, T) и (п, р)-реакций быстрых нейтронов на ядрах 14N, 6Li, 10В, 40Са и др., присутствующих в различных материалах, используемых в конструкции реактора.
Часть реакций образования трития протекает непосредственно в реакторной воде (в воде первого контура АЭС с ВВЭР, в воде и пароводяной смеси контура многократной принудительной циркуляции АЭС с РБМК), а часть- в твэлах и стержнях регулирования. Из твэлов и стержней регулирования тритий попадает в реакторную воду при нарушении герметичности оболочек твэлов или стержней регулирования, а также вследствие диффузии - через оболочки или вследствие утечки - через неплотности оболочек. Количество (активность) трития, поступающего из твэлов в теплоноситель, в каждый данный момент различно и зависит как от продолжительности работы реактора, т. е. от количества наработанного в твэлах трития, так и от количества негерметичных твэлов, эксплуатируемых в активной зоне реактора.
На АЭС с ВВЭР с борным регулированием основной реакцией образования трития в теплоносителе является реакция В (п,2α)Т, в отсутствие борного регулирования - реакция активизации дейтерия, т. е. Д (п, γ)Т. На АЭС с РБМК в теплоносителе тритий образуется в основном по реакции Д (п, γ)Т. К тритию, образовавшемуся в теплоносителе, по этим реакциям добавляется тритий утечки из твэлов и стержней регулирования.
Большой разницы между активностью трития в выбросах АЭС с ВВЭР и РБМК (одинаковой мощности) нет. Это обусловлено особенностями контуров, в которых образуется и циркулирует тритий и организацией эксплуатации активной зоны реакторов. Обычно на АЭС с ВВЭР мощность выброса трития и его активность, выбрасываемая, например, за год работы АЭС, несколько больше, чем на АЭС с РБМК. Объемная активность трития в выбросе АЭС с РБМК - 1000 составляет (3-4)х10 -1Бк/л, т. е. мощность выброса трития - максимум порядка 108-109Бк/сут с двух энергоблоков. (В формировании этих значений, естественно, участвует глобальный и естественный тритий, задутый на АЭС приточной вентиляцией.) Поскольку мощность выброса трития невелика, для оценок можно принять, что вне зависимости от типа реактора, работающего на АЭС (технологической схемы АЭС), активность трития, удаляемая с АЭС в атмосферу, за год составляет не более нескольких единиц х1014 Бк, а мощность выброса 107- 109 Бк/сут. Это создает объемную активность трития в приземном слое атмосферы, равную не более нескольких единиц или нескольких десятков Бк/м3. При такой объемной активности трития в приземной атмосфере дозовая нагрузка на индивидуума из населения (верхняя оценка) составит не более 10-8 Зв/год.
Прямые измерения концентрации трития в приземной атмосфере в регионе Чернобыльской АЭС (до аварии 1986 г.) дали значение порядка 5 х10-4 Бк/л, т.е. порядка 0,5 Бк/м3, в других измерениях, например на Игналинской АЭС , - несколько больше, до 1 Бк/м3. Это значит, что оцененная дозовая нагрузка при ингаляции трития примерно в 10 раз меньше указанной ранее и, следовательно, составляет не более 10-3-10-4 допустимой для лиц из ограниченной части населения из-за радиоактивных выбросов АЭС. Примерно такие же значения можно получить по данным для региона Калининской АЭС, где измеренная в 1992 г. объемная активность трития в приземной атмосфере составила 10-4 Бк/л.
Таким образом, приведенные оценки показывают, почему выбросы трития в атмосферу не нормируют и почему нет необходимости контролировать мощность выброса трития с АЭС в атмосферу.
Большая часть трития, наработанного на АЭС, а точнее находящегося в воде первого контура или контура многократной принудительной циркуляции (до 80-85 %), покидает АЭС с жидкими стоками. Поскольку жидкие стоки на большинстве АЭС сбрасываются в водоем-охладитель, в него и поступает тритий, попавший с протечками в стоки: техническую (используемую для охлаждения турбин, другого оборудования), дебалансную и другие удаляемые с АЭС воды. Вполне можно полагать, что за год работы АЭС вода первого контура или контура многократной принудительной циркуляции обновится, и следовательно, весь наработанный и попавший в эти контуры тритий поступит в водоем-охладитель (естественно, за вычетом трития, который был выброшен в атмосферу, но это сравнительно небольшая его доля - не более 20 %).
АЭС и водоем-охладитель - единая система с прямыми и обратными связями между ее блоками - АЭС и водоемом. В этой системе и происходит циркуляция трития, как того, который относится к естественному и глобальному, так и образовавшегося при работе АЭС. Поэтому активность трития, сбрасываемую с АЭС в водоем, можно определить как разность между активностью трития в сбросах жидких стоков с АЭС и активностью трития в воде, забираемой на АЭС из водоема. Добавка трития в воду, взятую на АЭС из водоема, за время ее пребывания на АЭС мала, поэтому сделать это практически не удается. Из-за того, что до пуска АЭС в воде водоема-охладителя активность трития, как правило, не определяли, не удается определить динамику активности во время работы АЭС.
Это определение предполагали сделать на оз. Друкшяй - в водоеме-охладителе Игналинской АЭС, для чего была определена нулевая (до начала работы АЭС) объемная активность трития в воде озера: она составляла (25±5) Бк/л. Объемная нулевая активность трития была определена также в воде водоема-охладителя Чернобыльской АЭС. Она составляла (4-15) Бк/л . Однако последующие наблюдения в течение почти четырех лет работы Чернобыльской АЭС в пределах погрешности определения активности трития не выявили роста его объемной активности, а следовательно, и полной активности трития в воде водоема .
Итак Егоровым Ю.А. приведена информация о поступлении трития с АЭС в окружающую среду, содержании и накоплении его в объектах окружающей среды. Даны оценки радиационных нагрузок для гидробионтов и населения, свидетельствующие об отсутствии опасности трития, поступающего с АЭС (см. также Егоров, Ю. А. Оценка радиационной опасности трития, нарабатываемого на АЭС // Экология пром. произв-ва. - 2003. - N2. - С. 27) .
Иное мнение представлено в отчете Института прикладной экологии: Изучение радионуклидного состава радиационных сбросов и выбросов Калининской АЭС, а также возможного влияния на растительный покров в окрестности отдельных населенных пунктов" 1999г.(авторы Иванов А.Б.Носов А.В.).
... Тритий (Т) по ряду причин занимает особое место в вопросах обеспечения радиационной безопасности АЭС. Во-первых, содержание Т в жидких сбросах при нормальной работе АЭС намного превосходит по абсолютному значению содержание всех остальных нуклидов, а в газообразных выбросах в окружающую среду количество Т уступает только количеству радиоактивных благородных газов (РБГ). Во-вторых, в отличие от химически инертных РБГ, инкорпорированный Т эффективно включается в состав биологической ткани, вызывая мутагенные нарушения, как за счет бета-излучения средней энергии 5.8 кэВ, так и за счет нарушения молекулярных связей, вызванных заменой изотопа водорода нейтральным гелием, образовавшимся в результате распада трития .
В-третьих, Т обладает большим периодом полураспада (12.4 лет) и вследствие этого является глобальным загрязнителем природных комплексов .
Образовавшийся на АЭС тритий, в отличие от других радионуклидов, поступает в окружающую среду, минуя очистные барьеры, с жидкими стоками в виде тритиевой воды и с газовыми выбросами.
С 1987 по 1995 гг. нами (Иванов А.Б.Носов А.В.) проводились систематические исследования содержания трития в водных объектах и приземной атмосфере в районе расположения Калининской АЭС. Измерения выполнялись в аккредитованной Госстандартом России лаборатории с использованием жидкосцинтилляционного бета-счетчика LKB 1220. Предел чувствительности измерений содержания Т в воде составлял 0,4 Бк/л, а в воздухе 0,4х10-5 Бк/л. Погрешность измерений концентрации Т в воде не превышала 30%, в воздухе - 50%.
За период исследований средняя концентрация Т в воде озер-охладителей изменялась в пределах от 140 до 192 Бк/л, имея тенденцию к увеличению. Максимальная концентрация была отмечена в марте 1994г и составляла 260 Бк/л. Фоновая концентрация Т в воде озер Удомельского района составляет
4 - 8 Бк/л. Таким образом за счет сбросов КАЭС содержание трития в о.Песьво и Удомля превышает фоновые уровни этого нуклида примерно в 30-50 раз. Среднегодовой вынос Т из озер с водами р.Сьежа оценивается в 11,1 ТБк/год. Прогноз, показывает, что при пуске третьего блока КАЭС максимальная концентрация Т в воде озёр может достигнуть 370 Бк/л, а при неблагоприятных гидрометеорологических условиях в маловодный год - 440 Бк/л. Приводимые оценки справедливы только в случае продолжения сбросов тритий-содержащих вод в озёра-охладители без учёта закачки в подземные горизонты.
В большинстве сельских источниках питьевого водоснабжения cодержание Т находилось на уровне ниже чувствительности метода измерений. Исключение составили пять колодцев, расположенных в береговой зоне озера Песьво, концентрация Т в которых находилась в диапазоне от 2,6 до 19,6 Бк/л. Появление Т в колодцах, по-видимому, связано с загрязнением водоносных пластов в береговой зоне озер Удомли и Песьво. Одной из задач исследований являлось определение концентрации Т в воде малых прудов и водообразований, используемых для водопоя скота. Наибольшее содержание трития - от 11 до 74 Бк/л отмечено в воде прудов, расположенных в непосредственной близости от оз. Песьво и Удомля. На удалении 10-20 км от озер концентрация трития снижалась до фонового уровня.
В штатном режиме работы КАЭС при коэффициенте используемой мощности 0,7 годовой газоаэрозольный выброс Т в атмосферу составляет примерно 11,1 ТБк/год . Среднегодовое поступление Т в атмосферу за счет испарения с поверхности оз.Песьво и Удомля нами оценивается величиной 5,5 ТБк/год. Таким образом, суммарное поступление трития в атмосферу составляет примерно 16,6 ТБк/год.
В период исследований концентрация Т в воздухе не превышала 1,3х10-4 Бк/л. Более 80% суммарного Т в пробах воздуха находилось в связанной форме в виде паров тритиевой воды. Максимальные концентрации Т в воздухе отмечались летом вблизи озёр-охладителей со стороны наветренного берега.
Для оценки влияния сбросов Т в о.Песьво и Удомля были рассчитаны дозовые нагрузки на население. При расчёте суммарной дозы предполагалось, что в воде озёр присутствуют только три нуклида: 134,137 Cs и Т, для которых критическим органом является всё тело .
Концентрации 134 Сs и 137 Сs в воде озёр при работе в штатном режиме и при пуске третьего блока при расчетах считались неизменными и равными среднеизмеренным: 3,7 и 14,8 Бк/м3 соответственно. Расчёты показали, что суммарная доза, создаваемая тремя нуклидами, при вкладе трития 30% составляет 0,03 мЗв/год (3 мбэр/год). При расширении КАЭС до 3-х блоков доза облучения приблизится к 0,04 мЗв/год и вклад Т составит не менее 50%. В этом случае, по нашему мнению, потребуются систематические наблюдения за содержанием Т в воде озер и р.Съежи, так как любое повышение активности Т в сбросных водах будет приводить к превышению установленных СП АЭСдозовых пределов (0,05 мЗв/год). Поэтому в выводах авторов отчета представлено: "Расчётный вклад трития в общую дозовую нагрузку на население от комплексного водопользования в настоящее время не превышает 30%. При расширении КАЭС и увеличении сбров этого нуклида в озёра необходим более жёсткий контроль за содержанием трития в воде озёр, питьевых источников и приземной атмосфере.
Рекомендуем скачать другие рефераты по теме: реферат по культурологии, классификация реферат.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата