Переработка ТПО** и ТБО после проведения сепарации ТБО по группам
Категория реферата: Рефераты по экологии
Теги реферата: законодательство реферат, рефераты без регистрации
Добавил(а) на сайт: Коренёв.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Итак, разберем подробно способы получения органического природного биохимического экологически чистого удобрения биомассы-компоста.
Экологическая биотехнология - это специфическое применение биотехнологии для решения проблемы защиты окружающей природной среды, включая такие как переработка отходов, борьба с загрязнениями и соединение биотехнологических способов с небиологическими технологиями (6). Европейская биотехнологическая федерация определяет биотехнологию как совместное использование биохимии, микробиологии и химической технологии для технологического применения полезных качеств микроорганизмов и культур тканей (7).
Каковы же биохимические аспекты экологической биотехнологии? Процесс биологического и биохимического разложения всех вышеупомянутых природных компонентов это сложнейший процесс биоразложения и биодеструкции (6).
Основные параметры биотехнологии
1. Главным параметром биотехнологии является соотношение важных химических элементов углерода С к азоту N в массовых частях. Это соотношение С/N в субстрате (т.е. в общем комплексе природных, органических соединений), подвергающемуся биоразложению должно составлять от 25/1 до 30/1. Если это соотношение не существует, то его необходимо обязательно достигнуть введением того или иного компонента. Например, доказано и экспериментально подтверждено, что при соотношении (6) С/N55/1 достижение этой величины лимитируется процессом аэробного разложения. В течение этой стадии повышение температуры до +80°С и присутствие антимикробных препаратов абиотического происхождения приводит к гибели или инактивации патогенных микроорганизмов таких как Salmonella spp. и вируса, личинок насекомых и семян растений. Т.е. температура биодеградации является индикатором работы системы.
2. Строго регламентируется размер частиц субстрата, подвергаемого биодеградации. Размер частиц составляет по максимальной величине 12,5 мм для систем с перемешиванием и принудительной аэрации и 50 мм для компостных рядов в случае естественной аэрации.
3. Строго регламентируется влажность массы при биодеградации для аэробного компостирования (т.е. при доступе воздуха) она составляет 50-60%.
4. Регламентируется свободный объем биомассы. Он должен составлять около 30%.
5. Размеры для компостного ряда (для нас более приемлемого) должны составлять следующие величины:
а) высота - 1,5 м,
б) ширина - 2,5 м для биомассы и компостных рядов,
в) длина любая и зависит от площади полигона ТБО или ТП и БО.
6. Порог температуры биоразложения (компостирования) массы является температура +60 - +70°С. Превышение температуры +60 - +70°С, скажем на +10°С, является недопустимым, т.к. происходит гибель значительной части микрофлоры, микрофауны, макрофлоры и макрофауны, и происходит денатурация микробных и грибных ферментов. С одной стороны - при максимальных температурах гибнет опасная патогенная флора, т.е. происходит в значительной степени стерилизация биомассы, но одновременно происходит и гибель полезных представителей микрофлоры, микрофауны, макрофлоры и макрофауны и, кроме того, частично разрушаются ферменты, что в общем нежелательно. Кроме того, при высоких температурах погибают многие паразитические формы фауны в том числе наиболее распространенная гельминтофауна, опасная для человека и многих теплокровных животных. Другая крайность - низкие температуры тормозят процессы биохимического разложения. Поэтому для выбора оптимального температурного режима биотехнологического способа переработки выше названных природных компонентов необходимо в каждом конкретном случае исходить из реальных условий. Если возможно попадание в перерабатываемую массу патогенной флоры и паразитической гельминтофауны, то максимум температуры биодеградации нужно держать на верхнем пределе. Если такой возможности нет (второй вариант менее вероятен), то максимум температуры следует держать на нижнем пределе. Оптимум максимальной температуры биодеградации природных материалов считается +55 - +60°С (6).
7. Доступ кислорода воздуха способствует процессу биодеградации, т.е. должна существовать определенная естественная или искусственная аэрация. При этом аэрация должна быть в пределах 0,6 - 1,8 м3 воздуха в сутки на 1 кг летучей части от твердых веществ. В этих условиях должна происходить аэробная биодеградация, т.е. деградация (распад, разрушение) за счет развития аэробных бактерий и других биологических и биохимических факторов. Однако, существует довольно распространенное утверждение, основанное на научных фактах, что на первой стадии биодеградации целесообразно преимущественное развитие анаэробных бактерий или анаэробная биодеградация. Следует заметить, что "чистой" аэробной или "чистой" анаэробной биодеградации практически не существует. Модно говорить лишь об относительном преимущественном развитии тех или других видов бактерий (т.е. бактерий, развивающихся при доступе воздуха - аэробных бактерий и развивающихся без доступа воздуха - анаэробных). Почему в последние годы анаэробная биодеградация природных материалов на первой стадии биодеградации является более предпочтительней. Во-первых, при повышенной влажности (более 50-60%) происходит в наибольшей степени набухание всех целлюлозосодержащих и лигниносодержащих компонентов. А когда достигается повышенное набухание, то уже после этого возможно целесообразно перейти к аэробной биодеградации. Кроме того, в водной среде на первых порах осуществляется лучший транспорт многих биохимических компонентов в том числе грибных и бактериальных ферментов ко всем видам субстрата (веществ биомассы).
Следует учесть, что при закладке биомассы на биологическое разложение количество ее в конце процесса снижается на 35-40% от первоначального количества и выделяется ряд органических веществ на промежуточной стадии (в том числе так называемый биогаз, главной составной частью которого является метан CH4). При этом на этой стадии его можно использовать как биотопливо. Однако это потребует дополнительное оборудование и следовательно большие материальные затраты. Без больших затрат можно проводить биодеградацию до получения биомассы (компоста) пригодной в качестве сравнительно недорогого ( по сравнению с навозом) природного экологически чистого органического удобрения, пользующегося повышенным спросом у обывателей, особенно у садоводов и огородников всех разновидностей.
Однозначно сделать правильный выбор режима ферментации (аэробной или анаэробной) не всегда представляется возможным. Так Линч показал, что продукты анаэробной ферментации соломы ингибируют рост корней ячменя, в то же время , как при аэробной биодеградации образуются продукты, стимулирующие рост корней ячменя (6). В аэробных условиях солома разрушается быстрее и с меньшим накоплением водо-растворимых органических соединений. При анаэробных условиях накапливается много органических соединений в том числе много уксусной кислоты, образующейся через ацетальдегид, что является нежелательным. Поэтому, эти данные и результаты, полученные нами (аналогичные данным Линча) подтверждают ранее изложенные концепции, заключающиеся в следующем:
1. На первой стадии, по-видимому, более целесообразно сделать так сказать затравку и проводить сначала анаэробное разложение с целью интенсификации транспорта биореагентов (ферментов различного происхождения) и для набухания целлюлозосодержащих и лигниносодержащих субстратов. Практически это означает очень обильное орошение компостного ряда водой в течение 2-3 недель.
2. На второй стадии процесс биодеградации необходимо перевести из анаэробного режима в аэробный для того, чтобы в меньшей степени накапливались органические компоненты, в первую очередь уксусная кислота, и по возможности доводить разложение до конечного стабильного продукта биомассы (с потерей 35-40% от первоначальной массы) и выделения диоксида углерода и воды. Показателем стабильности продукта и завершенности процесса биодеградации, как уже указывалось, есть стабильность температуры биомассы, близкой к температуре окружающей среды.
Итак, исходным сырьем для получения биомассы являются полисахариды; олигосахариды и моносахариды, а также лигнин; содержащиеся в пищевых отходах, целлюлозно-бумажных и картонных, а также в древесных отходах. Все это компоненты, дающие углерод - С. Остатки животных отходов: мелкие и крупные кости, рыбные кости - это в основном компоненты дающие азот - N. Все эти животные отходы в значительной мере имеют белковую природу. Соотношение углерода - С к азоту - N в общей массе исходного сырья субстрата, по данным взятым нами из книги М.И. Мягкова и др. (2), составляет от 15 до 18. Это означает, что в исходную массу можно добавлять, после соответствующего подсчета, некоторое количество компонентов дающих углерод. Например, некоторое строго определенное согласно расчета количество дробленых древесных отходов или целлюлозно-бумажных или картонных отходов. Т.е. необходимо в любом случае для правильного ведения процесса довести соотношение C/N до величины 25/1 - 30/1 - главное соотношение для нормального протекания процесса биодеградации, согласно режима экологической биотехнологии. Если не хватает азота, то следует добавить также после соответствующего пересчета определенное количество белкового субстрата или носителя мочевины (и следовательно азота N) навоза (который является одновременно носителем бактериальных ферментов, микрофауны и микрофлоры, что и было показано одним из авторов данной книги несколько раз экспериментально).
Таким образом, процесс разложения полисахаридов и одного из важнейших из них целлюлозы как биополимера - продукта биохимии (природного полимера) по Имшенецкому происходит за счет биодеградации с образованием гидролитических фрагментов (8) и моносахаридов. Этот процесс происходит за счет фермента целлюлазы, который продуцируется аэробными и анаэробными бактериями. Почвенные бактерии и грибы - основные агенты, обеспечивающие гидролиз полисахаридов и в частности целлюлозы и ее спутников и их производных. Этот процесс идет через образование гумуса. Образование гумуса, по Имшенецкому в почве связано в первую очередь с разрушением целлюлозы. А гумус, сложнейший органический компонент почвы - основа ее плодородия. Целлюлозные бактерии играют большую роль в создании прочной структуры почвы, столь необходимой для ее плодородия. Основой структуры почвы, по В.Р. Вильямсу (9), является ее структура и в первую очередь комковатость почвы. Почва по В.Р. Вильямсу - производное жизни. В 60-х годах текущего столетия появились так называемые структурообразующие удобрения - вещества, вызывающие агрегирование почвенных частиц тяжелых глинистых, суглинистых, песчаных, супесчаных и других видов почв. В качестве структурообразующих удобрений используются гуминовые соединения и различные производные целлюлозы (10). Однако, высокая цена этих удобрений ограничивает зачастую возможность их применения. Производные целлюлозы (имеется в виду обычные промышленные АЦ, АБЦ, Na-КМЦ и т.п., не содержащие тяжелых металлов), по данным Института Химии АН Таджикской ССР, являются структурообразователями почвы и не выделяют при их попадании и разложении в почву токсических веществ (11). Как раньше, так и сейчас особенно необходимо усиленно вносить природные органические удобрения, чтобы всеми возможными силами препятствовать разрушению (эрозии) почв, которая наблюдается почти повсеместно. Это наш с Вами, дорогой читатель, прямой гражданский и общечеловеческий долг перед детьми и внуками.
Для правильного, осмысленного понимания данного этапа излагаемой работы нам следует рассмотреть вкратце состав почвы (в общих чертах). Итак, по Б.А. Ягодину почвенный слой почвы состоит из трех основных компонентов (12):
1. Твердая фаза почвы, представляющая собой многокомпонентный комплекс конденсированной фазы почвы. Главными компонентами комплекса являются: минеральная часть почвы и органическая часть.
2. Водный раствор Na+; K+: Ca++; Mg++; NH4+; NO3-; SO42-; H2PO4-.
3. Газ (выделение СО2, поглощение О2).
Схематично это следует изобразить в следующем виде:
Таким образом выглядит биохимическая и физико-химическая схема составных частей почвы, этот сравнительно тонкий слой поверхности суши, переработанный многогранной деятельностью живых существ. Почвенный слой - это трехфазный слой как уже показано на схеме. Твердые частицы почвенного слоя пронизаны порами и полостями, заполненными частично водными растворами выше упомянутых веществ, частично воздухом, содержащим СО2, О2 (и азот N2). Поэтому почву населяют как мелкие водные, так и воздухо-дышащие организмы. Объем мелких полостей почвы между комочками - важнейшая ее характеристика (комковатость) о чем, в свое время настаивал В.Р. Вильямс. Эти полости в рыхлых почвах могут составлять многие проценты. В плотных несформированных почвах их меньше. В этих порах и на поверхности комочков почвенного слоя обитает огромное множество микроскопических организмов: бактерий многих видов, различных грибов, простейших, крупных червей Annelida, членистоногих. Животные покрупнее прокладывают в почвенном слое ходы сами. Одновременно весь почвенный слой пронизан корнями высших растений (Planta). Глубина почвы определяется глубиной проникновения корней высших растений и деятельностью роющих животных. Обычно глубина почвенного слоя составляет на обрабатываемых сельскохозяйственных землях до 1,5 м. Но зачастую этот слой может быть значительно меньше.
Рекомендуем скачать другие рефераты по теме: вулканы доклад, классы реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата