Базы знаний
Категория реферата: Рефераты по философии
Теги реферата: образец курсовой работы, ответы по биологии класс
Добавил(а) на сайт: Веденеев.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Может быть также обнаружена семантическая несогласованность: А(В(С неприемлемо, если по определению и из свойств А и В с необходимостью
А((В.
4. Способность к самообъяснению. Это свойство связано одновременно и с
правилами, и с их структурами внешнего управления. Система легко
прослеживает цепочку правил, которую она использовала для получения вы
вода, так же как и использовавшиеся метаправила.
Однородное представление знания, определяемое установленным форма
том, разрешает создавать модели правил, которые позволяют получить ответы на некоторые вопросы и предусмотреть большую часть изменений ,в случае обнаружения ошибки в базе данных.
5. Эффективность. Практика доказала гибкость и компетентность таких
систем, как MYCIN, PROSPECTOR и R1. Эти системы являются уже не лабораторными игрушками, а высокопроизводительными устройствами. Они
оказались достаточно эффективными и выдерживают сравнение с процедурными системами во многих областях, примеры которых приведены, в частности, в работе (Rychener, 1978).
Их структура управления позволяет принимать в расчет многочисленные параметры, характеризующие ситуацию. Причина эффективности продукционных правил заключается в том, что эти правила учитывают конкретные данные в каждом случае.
3. Метазнание
Метазнание представляет собой любое знание о знании. Оно является
фундаментальным понятием для систем, которые не только используют свою базу
знаний такой, как она есть, но и умеют на ее основе делать выводы, структурировать ее, абстрагировать, обобщать, а также решать, в каких
случаях она может быть полезна. Ввод знаний в систему является задачей не
только специалистов в данной области но и самой системы, которая должна
управлять этим процессом.
3.1. Метазнание объектов окружающего мира
Решение проблем, охватывающих большие объемы знаний, требует умения обращаться с очень сложными и весьма различными типами данных, как по содержанию, так и по взаимосвязи с другими элементами системы. Требуемая информация должна не только присутствовать в программных комментариях и в мыслях разработчика, но и быть доступной самой системе. Таким образом, с каждым элементарным объектом может быть связано смысловое значение — концепт. Например, в системах МЕСНО и MYCIN каждый из концептов содержит следующую информацию: а) описательную часть, которая уточняет характеристики и структуру данных; б) указатель на все известные примеры концепта; в) связи с другими концептами; г) указатель в иерархии схем на группу концептов того же семейства.
Когда формулируется новое правило, которое содержит слово или группу слов, неизвестных системе, она их анализирует с помощью имеющихся концептов, используя контекст и последовательность слов правила. Более того, если некоторые свойства известны из других примеров того же концепта, то система в состоянии запросить у пользователя уточнения этого свойства для данного случая. При необходимости она также обнаруживает нарушения связи между концептами.
Подобные системы имеют возможность фиксировать все концепты одного и того же иерархического уровня, изменение, внесенное экспертом в, один из них, а также оценивать важность изменений, внесенных в базу данных, если в определенную структуру добавляется новый пример.
Кроме того, продукционные правила могут характеризоваться моделями правил. Эти модели создаются и управляются системой и учитывают периодичность использования правил. Они занимаются проверкой соответствия между новым правилом и базой, кроме того, именно они указывают эксперту на главные тенденции множества правил даже в том случае, когда самих правил эксперт не знает. Именно они обогащаются с каждым новым примером по мере роста множества правил. В системе МЕСНО, например, сами формулировки задач связаны с формой метазнания. Система постоянно пытается распознать в формулировке стандартную ситуацию. Когда ей это удается, она дополняет множество фактов всеми физическими гипотезами, справедливыми для данного случая.
3.2. Метазнание стратегий
В продукционных системах стратегии также представлены в форме метаправил, поскольку они затрагивают сами правила. Они являются изолированными и доступными для системы. Эвристические законы управления поиском решения используют эти метаправила в качественном и декларативном виде, вместо того чтобы использовать количественные оценки. С применением числовых оценочных функций связан риск ошибки: они плохо читаемы, отражаемый ими частичный порядок приводит с сложным вычислениям, любая модификация приводит к возможности появления ошибки.
Стратегии, заданные в форме метаправил, являются более четкими и
определенными. Выводы метаправил указывают на действия, которые необходимо
предпринять в рассматриваемой ситуации. Таким образом они реализуют
полезный потенциал, заключенный в множестве правил, и дают двойной эффект:
1) исключают определенные правила, не подходящие к данной ситуации, и тем самым уменьшают дерево поиска;
2) осуществляют частичную классификацию других правил, частично
упорядочивая ветви дерева поиска.
Конечно же, можно и дальше увеличивать число уровней знания, строя
дополнительные этажи над уже имеющимся и увеличивая это сооружение
по мере роста интеллектуальности самой системы. При этом мы добиваемся большей общности, так как тот же интерпретатор1 получает возможность работать в различных областях, а также большей устойчивости, так как более развитые модели не чувствительны к изменениям базы элементарных знаний.
По этой причине система CRYSALIS (Engelmore, 1979) включает три отдельных уровня правил. Она предназначена для анализа протеинов, и размеры ее пространства поиска очень важны с комбинаторной точки зрения. Классический подход в данном случае неприменим. Правила сначала группируются в подмножества (неразобщенные). Каждое подмножество предназначено для определенной обработки и используется при выполнении соответствующих условий. Соответствие между конечными классами и подмножествами правил устанавливается с помощью правил заданий, которые составляют второй уровень знаний. Эти правила определяют, как следует выполнить данное задание наилучшим образом.
Наконец, третий уровень относится к мета-метаправилам, которые определяют подцели и выражают их в зависимости от правил задания.
В примере, приведенном ниже, показан порядок выполнения системой одного
из правил задания, в посылках которого содержится задание ПРОВЕСТИ-МЕЖДУ-
ТОЧКАМИ, а также указывается, какому правилу должно быть отдано
предпочтение при выполнении задания:
ЕСЛИ два гипотетических элемента протеина аиb уже размещены с коэффициентом правдоподобия для каждого из них не менее 0,4
И ЕСЛИ число остаточных элементов в последовательности ab не более 5
ТО использовать правила, предназначенные для задания
ПРОВЕСТИ-МЕЖДУ-ТОЧКАМИ
Такой способ группировки правил обладает преимуществами и недостатками.
Преимущество заключается в том, что управление осуществляется в самом
правиле, каждое правило содержит собственные соображения по применению (см.
систему AM Лената (1977)). Такая же руководящая идея может быть легко
обнаружена и в семействе правил. Недостаток заключается в том, что посылки
правил могут оказаться очень громоздкими.
Рекомендуем скачать другие рефераты по теме: шпори по физике, воспитание реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата