Четвертая координата – козни лукавого
Категория реферата: Рефераты по философии
Теги реферата: реферати, реферат речь
Добавил(а) на сайт: Lagutov.
1 2 3 4 5 6 | Следующая страница реферата
Четвертая координата – козни лукавого
Вейник Виктор Альбертович
Принято начинать статью с упоминания гигантов, на плечи которых удалось взобраться, чтобы, коряво балансируя, успеть кинуть куда-то взгляд, прежде чем с грохотом рухнуть в собственную мысль, которую очень хочется подать на стол соратникам по цеху под наукообразным соусом. Но подобного рода кулинарный талант дается не каждому. Такие, на 90-95% исторические, опусы я обычно называю полетом пьяной вороны по кладбищу, шарахаясь головой о памятники. По этой причине оставлю квалифицированным историкам науки разбираться, кто и когда упомянул затрагиваемые проблемы и как они повлияли на будущие поколения, а сам, имея свою мысль, буду при вас её думать.
Количественные уровни мироздания.
Ученые со стародавних времен пытались умозрительно представить себе строение вселенной, устремляя своё внимание как в космические дали, так и к наимельчайшим частицам - первоэлементам. О разделении мироздания на количественные уровни, как правило, речи не шло, ибо мир представлялся единым и обнимающим человека. Со временем пришло понимание и необходимость хотя бы условно подразделить его на мега-, макро- и микромир. Естественно, что центральную, среднюю позицию занял макромир – сфера обитания человека и приложения его житейских интересов.
Разговоров о мирах, лежащих за пределами трех известных, наука не вела и не ведет, т.к. не имеет никакого представления, что это такое, а рисковать насиженным авторитетом ой как не хочется. Философию, например, число количественных уровней особо не волнует, её в первую очередь интересует качественный ряд ФДМ (сокращение от «форма движения материи», - ВВА), расставленных по степени сложности от простейшей (механической) до высшей – социальной.
Границы раздела между мега-, макро- и микромирами весьма условны. Более или менее определено различие только между макро- и микромиром, как сферы применения двух механик - ньютоновской и квантовой.
По мнению А.И. Вейника ряд количественных уровней мироздания имеет начальную точку отсчета, т.е. ограничен с одной стороны. Замечу, что в 1973 году в этом у него еще были сомнения [2, с.24]: «Надо думать, что всего существует неограниченное множество количественных уровней...». Первый (самый «тонкий») уровень Вейник назвал «аттомиром». Есть ли предельно большой уровень мироздания, по крайней мере логически доказать не удалось.
В 1968 году Вейник сформулировал два конкретных и наглядных правила - проницаемости и отторжения [1, с.131], которыми целесообразно руководствоваться при раскладке миров по количественным полочкам.
«Согласно правилу проницаемости, уровни мироздания должны выбираться таким образом, чтобы каждый последующий, более грубый мир, содержащий повышенное количество вещества, был бы при определенных условиях и в определенной мере проницаемым (прозрачным) для всех предыдущих, более тонких миров, содержащих меньшее количество вещества.
Согласно правилу отторжения, каждый последующий, более грубый мир должен быть способным и вынужденным при определенных условиях и в определенной мере отторгать (излучать, рождать) без особого ущерба для себя, а также поглощать вещество из всех предыдущих, более тонких миров» [3, с.45].
«Если ограничиться очень грубой оценкой, то наиболее характерные объекты миров различаются по размерам примерно десятью порядками, а по массам – тридцатью» [3, с.48]. «В частности, высвечивается любопытнейшая закономерность, согласно которой Вселенная оказывается в среднем однородной даже и при иерархическом ее строении» [3, с.49].
В целом правила удобны, однако существуют заметные трудности при установлении наименьших первочастиц, равно как и наибольших объектов (тел) внутри любого из рассматриваемых количественных уровней.
Число первоэлементов.
В данном случае границу раздела между мегамиром и макромиром мы пока рассматривать не будем. А вот можно ли считать наименьшими частицами макромира атомы, вопрос важный. Каких атомов, сколько их? Любой химический элемент таблицы Д.И. Менделеева имеет изотопы, которые в свою очередь могут быть стабильными и нестабильными. Из более чем 3000 изотопов стабильными являются лишь около 300. Распад элементов – это нормальный и естественный процесс, ибо в мире нет ничего вечного. Поэтому, рассуждая о стабильности, надо обязательно загодя указать на минимальный период, по истечении которого допустимо называть атомы устойчивыми, например, изотопы считаются стабильными, если время их жизни не меньше возраста Земли.
Особый интерес представляет начальное звено цепочки элементов – водород. Протон в совокупности с электроном является атомом, т.е. представителем макромира. Если их разлучить, то протон становится ионом и не «покидает» макромира, электрон же получает название элементарной частицы и «проваливается» в микромир, а разница в массах протона и электрона не столь уж и велика, всего-то около 1836.
На уровне микромира устойчивыми элементарными частицами общепризнанно считаются протон, электрон и фотон. Я сознательно в их число не включаю нейтрино, т.к. по поводу этой частицы придерживаюсь мнения А.И. Вейника: «Экспериментально проверить формулу (886: Е=МС^2) не составляет труда. Фактически она проверяется всякий раз, когда рассматривается баланс энергии микроскопической реакции. Первая же проверка показала, что формула (886) ошибочна. Но авторитет А. Эйнштейна столь велик, что ученые не отважились усомниться в формуле (886), а предпочли изобрести специальную частицу – нейтрино (...), которой приписали способность уносить недостающую в балансе энергию (В. Паули, 1930). Нейтрино – это одна из наиболее грандиозных научных мистификаций века» [1, с.388-389; 2, с.241].
Ну хорошо, природа поделилась с нами сведениями о трех стабильных элементарных частицах – дареному коню с зубы не смотрят. А откуда взялись ещё три сотни разношерстных частиц?
С момента осуществления первого искусственного превращения одного ядра в другое, т.е. с момента расщепления Э. Резерфордом (1919) ядра атома азота с помощью альфа-частиц, стало ясно, что для изучения структуры атомных ядер необходимы пучки ускоренных частиц. Природные источники ускоренных частиц – радиоактивные вещества – дают слишком малую интенсивность, ограниченную энергию и совершенно не управляемы, поэтому началась разработка специальных ускорителей. Но ускорять можно лишь электрически заряженные частицы - протоны или электроны. Следовательно, только ими можно расстреливать («бомбардировать») мишени, т.е. кристаллические решетки каких-либо химических элементов, а потом... изучать разлетающиеся осколки, которые, как известно, могут быть разные – большие, маленькие и средние. Именно таким образом получено столь большое число неизвестных ранее, короткоживущих элементарных частиц. Будут и ещё, потому что эффективно используется метод «большого молотка»: не достаточно дробилки весом 10 т, делают установку весом 100 т, слабовата и она – строят установку в 1000 т и т.д.
Так сколько же стабильных первоэлементов может быть на каждом из официально признанных уровней мироздания? На макроуровне их около 300, на микроуровне – всего три штуки. Тенденция, однако! Она на руку только эфирщикам, например В.А. Ацюковскому [4], который всё многообразие вышерасположенных миров с удовольствием построил из вихрей эфирных частичек – амеров, одного-единственного первоэлемента, принадлежащего субмикроуровню. Структура амера для него самого - загадка за семью печатями. Однако она не особенно его смущает. Ацюковский конструирует амер из вихрей более мелких амеров-1, каждый из которых в свою очередь состоят из вихрей ещё более мелких амеров-2 и так далее... до бесконечности. Философия гибка до безобразия, выручит кого угодно.
Структура первоэлементов.
Как устроен атом? Любой скажет – модель планетарная (эксперимент - Э. Резерфорд, 1911; три постулата - Н. Бор, 1913). В середине ядро, состоящее из протонов и нейтронов, а вокруг вьются электроны, правда как-то странновато, насквозь вероятностно, и сигают с орбиты на орбиту мгновенно, презрев здравый смысл, – вроде тут, потом вдруг не тут, в стиле трюков знаменитых фокусников Кио. А что делает электрон внутри ядра, порхая от протона к протону и беспардонно нейтрализуя временно (на 14,762 минуты) приютившего его хозяина?
Как устроен протон? Исследования рассеяния электронов и фотонов (гамма-квантов) на протонах позволило обнаружить пространственное распределение электрического заряда и магнитного момента протона (Р. Хофстедтер и др., 1957), а также электрической и магнитной поляризуемостей (В.И. Гольданский и др., 1960), таким образом доказав, что у него есть всё-таки внутренняя структура, правда какая, неизвестно.
Как устроен электрон, никто не знает, хотя «теоретически» считается, что он окружен умопомрачительной чертовщиной – шубой из виртуальных* фотонов, сшитой из нездоровых фантазий математиков. [Примечание *. Виртуальные частицы – это такие ненормальные частицы, которые вертятся между бытием и небытием, которые не успев родиться вопреки законам сохранения, тут же исчезают, не успев их нарушить].
Структуру фотона лучше всего охарактеризовать известной фразой – «Гусары, молчать!»
Об элементарных частицах субмикромира почти ничего неизвестно. Предполагается существование гравитона, мало чем отличающегося по свойствам от фотона (представителя микромира). Первым поисками гравитона начал заниматься американский физик Дж. Вебер (1959). Потратил на это всю свою жизнь, но не обнаружил, и не только он. Да и не мудрено, если до сих пор не знают, к какому миру относится гравитон – к микро- или субмикромиру.
Много копий поломано вокруг магнитного монополя (П.А.М. Дирак, 1931) с тем же грустным результатом. Между прочим, Вейник предложил свою гипотезу о существовании частицы магнитного поля - сатлона и провел подтверждающие её опыты [3, с.274-279], да кто ж его будет слушать, если он относится к Эйнштейну без должного пиетета.
Можно было бы поискать взаправдашний электрон - не частицу, которая током бьет любопытных, сующих два пальца в розетку, а носителя электрического заряда (принято именовать электростатическим полем) на уровне субмикромира. Хотя какому нормальному Гинзбургу или Круглякову это нужно, если субмикромир подведомственен лженауке?
Проблема массы.
Упорство, с которой ученые постигают глубины микромира, вполне естественно заставляет их не только крошить материю в пыль, но и определять свойства полученных частичек. С чем бы удивительным они ни сталкивались, всегда автоматически подразумевалось, что первоэлементы непременно обладают массой, как и абсолютно любое другое природное тело. Иначе было бы просто невозможно в расчетах манипулировать простейшей механической ФДМ, обросшей к XIX веку убедительным математическим аппаратом, к тому же прекрасно подтвержденным экспериментально.
Рекомендуем скачать другие рефераты по теме: решебник 6, диплом купить.
1 2 3 4 5 6 | Следующая страница реферата