Эволюция с позиций синергетики и общей теории систем
Категория реферата: Рефераты по философии
Теги реферата: скачать реферат бесплатно без регистрации, решебник 8
Добавил(а) на сайт: Ватолин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
Поэтому синергетика в том виде, в котором она существует сегодня, полна неточностей, недоработок и противоречий и не может быть отдельной наукой, претендующей на объяснение эволюции Мира, а может быть всего лишь небольшой частью общей теории систем (ОТС), но при условии коренного пересмотра своих основных понятий и положений. Современная синергетика не может ответить на вопросы о механизмах и движущей силе организации материи и вопросы о происхождении эволюции и положительной энтропии остаются открытым. Тем не менее все же попробуем найти ответы на эти вопросы, но прежде всего отметим, что для того, чтобы группа элементов могла целенаправленно взаимодействовать, необходимо выполнение ряда условий.
Во-первых, для того, чтобы возникла система, производящая определенные результаты действия необходимо наличие кого-то или чего-то "заинтересованного" в новом качестве результата действия, кто (или что) определит заданное условие (поставит цель-задание), построит блок управления и задаст ему уставку, потому что любая система имеет цель и эта цель ставится перед ней извне. Цель определяет суть системы, а не наоборот, потому что цель является системообразующим фактором.
Этим "заинтересованным" может быть, например, человек, который строит что-то и ему нужны системы с заданными свойствами. Он может построить тот же гвоздь, или космический корабль для определённых целей.
"Заинтересованным" может быть также случай в паре с естественным отбором, когда путём большого количества случайного перебора могут возникнуть соответствующие комбинации элементов и их взаимодействий, наиболее устойчивые в данных условиях внешней среды. Таким образом, внешняя среда ставит условия, а случай строит системы под эти условия. Здесь мы не рассматриваем условия, в которых осуществляется генерация или дегенерация, и которые связаны с избыточностью или недостатком энергии (с положительной или отрицательной энтропией). Мы также пока не рассматриваем причин случайности. Мы рассматриваем только необходимость и целесообразность создания систем (принцип задания цели извне).
Чем больше сложность системы, тем больше вариантов перебора должно быть, тем больше времени на это требуется, по закону больших чисел. Не зря биологическая эволюция длится многие миллиарды лет.
Но в любом случае любые системы строятся под какие-то определённые цели. Цель – это и есть "заинтересованность". Опять подчеркнем, что пока мы не рассматриваем теософские и прочие причины "заинтересованности" и оставим этот вопрос открытым. Отметим лишь, что в понятии цели есть дуализм: цель как задание и цель как стремление. Цель-задание задаётся любым системам извне, будь то случай, человек, естественный отбор, иной мир или что-либо другое. А система стремится выполнить заданную ей цель, потому что у нее есть цель-стремление. При этом добавим, что в данном случае речь идет о генеральной цели-задания, которую система стремится выполнить (цель-стремление) и которую система делит на подцели (иерархия целей, см. в [4]) и распределяет эти подцели между своими подсистемами в виде целей-заданий, но уже для этих подсистем. Т.е., у любых систем, включая человека, нет свободы воли для выбора своей генеральной цели-задания, потому что она задается извне, но, вероятно, есть свобода воли выбирать подцели (пути или способы) для достижения генеральной цели. Наш выбор, например, пойти в университет, а не начинать грабить в подворотнях, диктуется нам нашим воспитанием, полученным от общества (родителей, улицы и т.д.), т.е., извне. Как бы печально это ни звучало для нас, но, возможно, даже и этой свободы выбора у нас нет и все наши действия уже предопределены целевой направленностью Мира и логикой нашего строения и функционирования (лапласовский детерминизм). Никто не сунет руку в огонь просто потому, что ему так хочется. И если найдется кто-то, кто "назло кондуктору" совершит это нелогичный поступок, спустя некоторое время боль заставит его прекратить это.
Те бифуркации поведения систем, которые часто разбираются в соответствующей литературе, объясняются не случаем, а либо исчезающе малым внешним воздействием, незаметным для нашего восприятия, но заметным для срабатывания системы, либо несовершенством блока управления системы, который не может правильно определить и оценить внешнюю ситуацию, потому что в его "базе знаний" нет ее описания, или он не может принять верного решения, потому что его нет в его "базе решений". Если бы Буриданов осел ждал бы исчезающе малой флюктуации, чтобы выбрать стог сена, он наверняка помер бы с голоду. Биологические системы тем и отличаются от систем минерального мира, что у них другая система симметрии. Почему-то биологическая органическая химия однозначно "предпочла" левое вращение поляризации молекул, исключив тем самым бифуркации на этом уровне без всяких на то "видимых" оснований. В чем же тогда заключается свобода нашей воли, если она вообще есть? В оценке происходящего вокруг нас и в нашем отношении к этому? Вопрос вопросов, на который пока нет ответа.
Здесь мы не можем обойти вниманием следующее очень существенное для биологических систем следствие. Выживаемость является одной из основных целей любого живого организма. А поскольку цель задаётся извне, то и выживаемость является чем-то, задаваемым нам извне, а не является чем-то, что исходит из наших внутренних побуждений. Другими словами, хотя цель выжить и является нашим внутренним побуждением, но кто-то или что-то извне когда-то в нас это внедрил. А до внедрения это не было "нашим". Как будто бы то, что создало нас знает, что Мир настолько жесток и жизнь настолько тяжела, что если бы системам было бы дано право самим решать, хотят они жить или нет, то, вероятно, многие бы из систем предпочли бы не жить. А так хочешь-не-хочешь, но постоянно должен "сдавать экзамен" на выживаемость и, тем самым, развиваться эволюционируя. Картинки из жизни в африканской саване очень наглядно демонстрируют это.
Во-вторых, для того, чтобы в принципе была возможность построения систем с любым блоком управления, даже простейшим, необходимо наличие таких элементов, качества результатов действия которых принципиально давали бы эту возможность. Это вытекает из закона сохранения и закона причинно-следственных ограничений [4] – ничто само собой не происходит и на все есть причина. Если должно совершиться какое-либо действие, то совершить его должен какой-либо объект (система), который имеет эту способность совершать данное действие. Улыбки без кота (или другого носителя) не бывает.
Эти элементы должны иметь входы для внешнего воздействия (обязательно), входы уставки (необязательно для неуправляемых СФЕ) и выходы результата действия (обязательно). Выходы и входы должны иметь возможность взаимодействовать между собой. Эта возможность реализуется комбинацией гомореактивности и гетерореактивности элементов.
Физическая гомореактивность – способность элемента давать такой же вид результата действия, каким является внешнее воздействие (давление → давление, электричество → электричество, и т.д.). При этом характеристики физических параметров не меняются (10 гр →10 гр, 5 mV → 5 mV и т.д.). Гомореактивные элементы являются передатчиками действий.
Физическая гетерореактивность – способность элемента в ответ на внешнее воздействие одного физического рода давать результат действия другого физического или не физического рода ( давление → частота электрических импульсов, электрический ток → поворот оси вала, температура воздуха – ощущение комфорта и т.д.). Гетерореактивные элементы являются преобразователями действий.
Элементами с физической гетерореактивностью являются, например, все рецепторы живого организма (преобразуют сигналы измеряемых параметров в пачки нервных импульсов), сенсоры измерительных приборов, рычаги, валы, плоскости и т.д. Ими могут быть любые материальные вещи и не материальные объекты окружающего нас мира, которые могут удовлетворять условиям гетерореактивности.
Химические реакции также подпадают под разряд физических, поскольку химические реакции – это перенос электронов с одних атомов на другие.
Логическая гетерореактивность – способность элемента в ответ на внешнее воздействие одного физического рода давать результат действия того же физического рода ( давление → давление, электрический ток → электрический ток и т.д.), но с другими характеристиками (10 гр → 100 гр, 5 mA → 0.5 mA, 1 Hz → 10 Hz, 5 импульсов → 15 импульсов и т.д.). Усилители, преобразователи кода, логические компоненты электроники – это всё примеры элементов с логической гетерореактивностью.
Нейроны не обладают физической гетерореактивностью, поскольку они могут воспринимать только потенциалы действия (электричество) и их же генерировать. Но у них есть логическая гетерореактивность, они могут преобразовывать частоту и число импульсов. Они преобразовывают не сам физический параметр, а его характеристики.
Любая система состоит из двух типов элементов, исполнительных (СФЕ) и управляющих (блок управления). В то же время любой блок управления любых систем сам состоит из каких-то частей (элементов) и имеет определенную для него цель. Следовательно, он также попадает под определение систем. Т.е., блок управления и его части сами являются определёнными системами (подсистемами) с определёнными целями и имеют собственные исполнительные элементы и локальные блоки управления, управляющие этими исполнительными элементами. Обязательным условием для части из них является их способность к гетерореактивности того или иного рода. Эффект их управляющего действия заключается только в их взаимном расположении. В локальный блок управления вводится уставка (задание условия, цель), и он постоянно следит за тем, чтобы результат действия всегда соответствовал уставке. При этом уставка может задаваться извне другой системой, внешней по отношению к данной, или самообучающийся блок может "решить" сам изменить параметры уставки (но не цель!). Следовательно, элементы управления могут быть такими же, как и элементы исполнения. Разница только во взаимном расположении. Директор предприятия такой же человек, как и рядовой инженер или рабочий.
Все элементы системы, исполнительные (СФЕ) и управляющие, построены по определённой схеме, конкретной для каждого конкретного случая (для каждой конкретной цели), но все они должны иметь "выход", откуда выходит результат действия данного элемента и два "входа" – для внешнего воздействия и для входа уставки.
Если выходы каких-либо элементов соединены с входами для внешних воздействий других элементов, такие элементы являются исполнительными (рис. 11А). В этом случае элементы являются преобразователями одних результатов действия в другие, потому что результаты действий систем-доноров являются внешним воздействием для систем-реципиентов (для исполнительных элементов). Они (внешние воздействия) как бы входят в систему и выходят из неё уже преобразованными в виде новых результатов действия.
Если выходы элементов соединены с входами уставки других элементов, такие элементы являются управляющими и входят в состав блока управления (рис. 11В). В этих случаях результат действия одних систем является уставкой (директивой) для исполнительных элементов, директивой как преобразовывать результаты действия систем-доноров в результаты действия систем реципиентов.
Но всегда при соединении выходов и входов должен выполняться закон однородности действий и однородной интерактивности (гомореактивности) соединения выход-вход. Если, например, результатом действия элемента-донора является давление (системы "А"), то вход внешнего воздействия (система "В" на рис. 11А) или уставки (система "В" на рис. 11В) элемента-реципиента должен быть способен реагировать именно на давление, иначе взаимодействие между элементами невозможно.
В третьих, для того, чтобы "влезть" в управление других систем, у данной системы должна быть физическая или какая-либо другая возможность присоединить собственный выход результата действия или собственный стимулятор ко входу уставки какой-либо другой системы. В этом случае эта другая система становится подсистемой, подчиняющейся данному блоку управления. Т.е., системы должны иметь физическую возможность совмещать выходы своих стимуляторов и/или результатов действия с входами уставки других систем. Для этого они должны быть подвижны.
Если системы свободно двигаются в пространстве, они могут случайно или не случайно соединяться своими выходами-входами и образовывать новые системы. Но это возможно только лишь при избытке свободной энергии, потому что для образования любой связи одного только сближения недостаточно. Для образования связи нужна еще и энергия, источником которой может быть либо внутренняя энергия системы, запасенная заранее (активные системы), или привнесенная внешним воздействием (пассивные системы). Поэтому образование систем возможно лишь при избытке свободной энергии [4].
Но и только лишь энергии недостаточно. Необходимо еще что-то, что обеспечит однонаправленность развития в сторону положительной энтропии. Синергетика предлагает два принципа для этого "что-то" – принцип проментальности элементов систем [14] и принцип случайности [8, 14]. Случайно образовались органические вещества (СФЕ с простейшими блоками управления) в первичном океане Земли. Случайно из них образовались первичные агрегаты из органических молекул (системы с простыми блоками управления). Случайно из них образовались первичные организмы (системы с простыми и сложными блоками управления). Случайно развились из них более сложные организмы (системы со сложными, с самообучающимися и интеллектуальными блоками управления). Случайно, но по закону эволюции видов – выживает сильнейший, т.е., наиболее приспособленный к данным условиям проживания. Все выглядит достаточно логичным, если только существует случайность как абсолютная категория, хотя слишком много случайностей. Но даже если случайность существует как объективная абсолютная реальность, то образование систем в таком случае не является самоорганизацией, а является принудительной навязанной случаем организацией. Только наличие про- или какой-либо другой ментальности (способности самостоятельно принимать решение и осуществлять его) является необходимым условием возникновения самоорганизации. Предполагать наличие проментальности у электрона очень сомнительно. Гораздо легче предполагать наличие у него заданных ему извне "врожденных" свойств объединяться с протоном для образования атома (он таким сделан), а это указывает на принудительную организацию, навязанную принципом случайности (синергетика) или принципом задания цели извне (ОТС, [4]), но не на самоорганизацию.
Но если закон сохранения является абсолютным и нерушимым, то в нашем Мире нет места и абсолютной случайности. Следовательно, наиболее вероятной причиной организации материи, этим "что-то" является не принцип проментальности и принцип случайности, а принцип задания цели извне, т.е., "кто-то" или "что-то" (природа, Всевышний или что-то подобное) создал элементы такими (задал им цель), что они "не раздумывая" действуют и образуют только то, что им предписано, как только условия позволяют это сделать. И совсем необязательно предполагать наличие Всевышнего или природы в противопоставлении системам. Системы являются неотъемлимой частью природы и могут влиять на развитие и эволюцию Мира. И если эволюция Мира происходит циклически, то можно предположить, что системы, очередной раз развившись до определенного уровня, сами программируют свое будущее и развитие в очередном цикле эволюции Мира. Возможно, мы сами себе боги, или природа, назвать можно как угодно. А это и есть абсолютная самоорганизация систем, когда системы сами определяют свое развитие.
Рекомендуем скачать другие рефераты по теме: налоговая реферат, шпаргалки бесплатно скачать.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата