О сути субстанции
Категория реферата: Рефераты по философии
Теги реферата: реферат методы, реферат на тему государство
Добавил(а) на сайт: Zhuravljov.
Предыдущая страница реферата | 1 2 3
Второй класс монад отличается тем, что его элементы обладают ощущениями и созерцаниями. Самым неразвитым представителям этого класса свойственны пассивные, т. е. подсознательные и полусознательные, смутные созерцания. Излюбленными примерами таковых служат у Лейбница едва слышный для нас шорох, издаваемый падающей песчинкой, и слабый шум прибрежных волн. Но это значит, что смутные перцепции, по Лейбницу, имеются не только у низших, но и у развитых монад (душ). Основной состав второго класса - животные. Их деятельность преимущественно страдательна, пассивна; самосознание им не свойственно.
Третий, самый высокий из известных нам класс монад образуют души людей. Усредненный элемент третьего класса был для Лейбница той моделью, по которой он формировал учение о монадах вообще.
Итак, монады при всем безграничном их качественном разнообразии, составляют всеобщую последовательность, систему. Развитие монад низшего класса имеет целью достижение состояния монад более развитых, животных, а развитие последних устремлено к состоянию духов. Но и у высших, духовных монад, т. е. людей, наблюдается та же картина - их сознательной жизни, ориентированной на развитие научного и философского мышления, предшествуют довольно примитивные состояния как в детстве, так и на начальных стадиях познания ими любого объекта, поскольку оно начинается с пассивной чувствительности. В монаде более высокого ранга всегда присутствуют низшие состояния. В свете этого учения Лейбница получает новое осмысление теория Аристотеля о трех уровнях (видах) души - растительном, животном и разумном, т. е. мыслящем. Рациональное содержание этой теории в том, что высшие функции организма не могут осуществляться иначе как на основе низших функций, то есть первые зависят от последних.
Сходство программ всех монад выражается и в общности тенденций развития их эмоциональной жизни. Совершающиеся в них познавательные процессы внутренне связаны с желаниями, составляющими как бы их другую сторону. По мере усиления познавательной активности монад возрастают и их желания, которые в свою очередь становятся источником дальнейшего прогресса монад, их ориентации на переход во все более высокие, т. е. совершенные состояния. Монады к этой цели "страстно" стремятся, их объединяет в этом общая по содержанию телеология, хотя она всегда в разной мере реализуется разными монадами, и иерархия по степеням совершенства имеет место также с точки зрения степени реализации общей для всех них цели.
Каков же конечный пункт телеологического развития монад и как "далеко" он "отстоит" от людей? Каков исходный пункт их развития в мировой последовательности?
Вопрос об исходном пункте решается с точки зрения непрерывного ряда "метафизических дифференциалов": какая бы неразвитая монада не была названа, всегда можно в принципе указать какую-то другую, еще менее развитую, так что, обозначая "начало" всемирной последовательности через "какую разновидность бесконечного множества. Таким же подходом определяется решение проблемы существования класса или классов монад post humanum - после людей.
Конкретный ответ здесь невозможен, так как действует принцип "высшие монады непостижимы для низших", но общий характер ответа намечается явственно - такие классы не могут не существовать, ибо нет конца ни желаниям монад-людей, то есть стремлению их к дальнейшему совершенствованию, ни общему прогрессу всего их коллектива. Лейбниц считает, что во Вселенной есть живые существа, более совершенные, чем люди.
Однако высший пункт в цепи прогрессирующих монад - это не люди, но и не существа, более совершенные, чем человек. А существует ли этот пункт вообще? Или это регулятивная, но объективно как раз не существующая цель стремлений? Как целевая причина - объективная или же регулятивная - этот конечный пункт оказался бы одновременно и окончательной "пружиной" эволюции любой монады, упорядочивающей и согласовывающей ее деятельность с деятельностью всех остальных монад.
Для ответа на последний вопрос присмотримся поближе к мировой последовательности монад. Она не выражает развития системы монад в том смысле, что происходит преврвщение одних монад в другие,- такое развитие Лейбниц отрицал. Но прогресс каждой из монад в едином их ряду в принципе ничем, нигде и никогда не может быть остановлен, хотя их развитие и совершает часто попятные движения, поскольку от того, что в мире явлений называют смертью, а в мире сущностей - инволюцией монад, происходит временное возвращение их на более низкий уровень духовной жизни, и нет, кроме того, гарантии, что после каждого такого возвращения сразу же последует подъем на ранее достигнутый, а тем более на еще более высокий уровень.
На условной линии развития нет завершения, если рассматривать ее как последовательность всех монад, расположенных в соответствии с актуально достигнутой в данный момент степенью их развития. Ведь та часть последовательности, которая расположена после монад - душ человеческих, безгранична, представляя собой как бы направленный луч. В безграничной Вселенной не только безгранично велико число более совершенных существ, чем люди, но и безгранично велико число различных степеней совершенства, присущего различным их группам.
Лейбниц был творцом одной из самых оригинальных и плодотворных философских систем нового времени. Диалектика, логика и глубоко научный стиль - вот что характеризует лучшие стороны его философского творчества. Эта философия впитала в себя достижения предшественников и современников, дала свой ответ на их искания, а во многом и обогнала свое время.
ПЛАТОН (философский взгляды характерные идеализму)
Сочинения Платона (427-347 гг. до н.э.) - уникальное явление в отношении выделения философской концепции. Это высокохудожественное, захватывающее описание самого процесса становления концепции, с сомнениями и неуверенностью, подчас с безрезультатными попытками разрешения поставленного вопроса, с возвратом к исходному пункту, многочисленными повторениями и т.п. Выделить в творчестве Платона какой-либо аспект и систематически изложить его довольно сложно, так как приходится реконструировать мысли Платона из отдельных высказываний, которые настолько динамичны, что в процессе эволюции мысли порой превращаются в свою противоположность.
Платон неоднократно высказывал свое отношение к математике и она всегда оценивалась им очень высоко: без математических знаний "человек с любыми природными свойствами не станет блаженным", в своем идеальном государстве он предполагал "утвердить законом и убедить тех, которые намереваются занять в городе высокие должности, чтобы они упражнялись в науке счисления". Систематическое широкое использование математического материала имеет место у Платона, начиная с диалога "Менон", где Платон подводит к основному выводу с помощью геометрического доказательства. Именно вывод этого диалога о том, что познание есть припоминание, стал основополагающим принципом платоновской гносеологии.
Значительно в большей мере, чем в гносеологии, влияние математики обнаруживается в онтологии Платона. Проблема строения материальной действительности у Платона получила такую трактовку: мир вещей, воспринимаемый посредством чувств, не есть мир истинно существующего; вещи непрерывно возникают и погибают. Истинным бытием обладает мир идей, которые бестелесны, нечувственны и выступают по отношению к вещам как их причины и образы, по которым эти вещи создаются. Далее, помимо чувственных предметов и идей он устанавливает математические истины, которые от чувственных предметов отличаются тем, что вечны и неподвижны, а от идей - тем, что некоторые математические истины сходна друг с другом, идея же всякий раз только одна. У Платона в качестве материи началами являются большое и малое, а в качестве сущности - единое, ибо идеи (они же числа) получаются из большого и малого через приобщение их к единству. Чувственно воспринимаемый мир, согласно Платону, создан Богом. Процесс построения космоса описан в диалоге "Тимей". Ознакомившись с этим описанием, нужно признать, что Создатель был хорошо знаком с математикой и на многих этапах творения существенно использовал математические положения, а порой и выполнял точные вычисления.
Посредством математических отношений Платон пытался охарактеризовать и некоторые явления общественной жизни, примером чего может служить трактовка социального отношения "равенство" в диалоге "Горгий" и в "Законах". Можно заключить, что Платон существенно опирался на математику при разработке основных разделов своей философии: в концепции "познание - припоминание", учении о сущности материального бытия, об устройстве космоса, в трактовке социальных явлений и т.д. Математика сыграла значительную роль в конструктивном оформлении его философской системы. Так в чем же заключалась его концепция математики?
Согласно Платону, математические науки (арифметика, геометрия, астрономия и гармония) дарованы человеку богами, которые "произвели число, дали идею времени и возбудили потребность исследования вселенной". Изначальное назначение математики в том, чтобы "очищался и оживлялся тот орган души человека, расстроенный и ослепленный иными делами", который "важнее, чем тысяча глаз, потому что им одним созерцается истина". "Только никто не пользуется ею (математикой) правильно, как наукою, влекущей непременно к сущему". "Неправильность" математики Платон видел прежде всего в ее применимости для решения конкретных практических задач. Нельзя сказать, чтобы он вообще отрицал практическую применимость математики. Так, часть геометрии нужна для "расположения лагерей", "при всех построениях как во время самих сражений, так и во время походов". Но, по мнению Платона, "для таких вещей ...достаточна малая часть геометрических и арифметических выкладок, часть же их большая, простирающаяся далее, должна ...способствовать легчайшему усвоению идеи блага". Платон отрицательно отзывался о тех попытках использования механических методов для решения математических задач, которые имели место в науке того времени. Его неудовлетворенность вызывало также принятое современниками понимание природы математических объектов. Рассматривая идеи своей науки как отражение реальных связей действительности, математики в своих исследованиях наряду с абстрактными логическими рассуждениями широко использовали чувственные образы, геометрические построения. Платон всячески старается убедить, что объекты математики существуют обособленно от реального мира, поэтому при их исследовании неправомерно прибегать к чувственной оценке.
Таким образом, в исторически сложившейся системе математических знаний Платон выделяет только умозрительную, дедуктивно построенную компоненту и закрепляет за ней право называться математикой. История математики мистифицируется, теоретические разделы резко противопоставляются вычислительному аппарату, до предела сужается область приложения. В таком искаженном виде некоторые реальные стороны математического познания и послужили одним из оснований для построения системы объективного идеализма Платона. Ведь сама по себе математика к идеализму вообще не ведет, и в целях построения идеалистических систем ее приходится существенно деформировать.
Вопрос о влиянии, оказанном Платоном на развитие математики, довольно труден. Длительное время господствовало убеждение, что вклад Платона в математику был значителен. Однако более глубокий анализ привел к изменению этой оценки. Так, О.Нейгебауэр пишет: "Его собственный прямой вклад в математические знания, очевидно, был равен нулю... Исключительно элементарный характер примеров математических рассуждений, приводимых Платоном и Аристотелем, не подтверждает гипотезы о том, что Эвдокс или Теэтет чему-либо научились у Платона... Его совет астрономам заменить наблюдения спекуляцией мог бы разрушить один из наиболее значительных вкладов греков в точные науки". Такая аргументация вполне убедительна; можно также согласиться и с тем, что идеалистическая философия Платона в целом сыграла отрицательную роль в развитии математики. Однако не следует забывать о сложном характере этого воздействия.
Платону принадлежит разработка некоторых важных методологических проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания. Так, процесс доказательства необходимо связывает набор доказанных положений в систему, в основе которой лежат некоторые недоказуемые положения. Тот факт, что начала математических наук "суть предположения", может вызвать сомнение в истинности всех последующих построений. Платон считал такое сомнение необоснованным. Согласно его объяснению, хотя сами математические науки, "пользуясь предположениями, оставляют их в неподвижности и не могут дать для них основания", предположения находят основания посредством диалектики. Платон высказал и ряд других положений, оказавшихся плодотворными для развития математики. Так, в диалоге "Пир" выдвигается понятие предела; идея выступает здесь как предел становления вещи.
Критика, которой подвергались методология и мировоззренческая система Платона со стороны математиков, при всей своей важности не затрагивала сами основы идеалистической концепции. Для замены разработанной Платоном методологии математики более продуктивной системой нужно было подвергнуть критическому разбору его учение об идеях, основные разделы его философии и как следствие этого = его воззрение на математику. Эта миссия выпала на долю ученика Платона - Аристотеля.
ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ.
В данной работе предпринята попытка осветить проблему субстанции в философских течениях разных направлений и на разных этапах истории. В работе не высказывается мнение автора, а лишь приводятся определения и точки зрения великих философов человечества. На примере их жизнеописания и описания их концепций автор хотел показать развитие философской концепции субстанции и ее метаморфозы от философа к философу, от эпохи к эпохе, влияние одной философской концепции на другую, пересечение концепций.
Скачали данный реферат: Shkuratov, Лавлинский, Мирсиянов, Nosov, Ikanov, Наркис, Капустин.
Последние просмотренные рефераты на тему: отчет о прохождении практики, реферат группы, сочинение рассказ, скачать реферат на тему.
Предыдущая страница реферата | 1 2 3