Онтология, эпистемология и философия языка Рассела
Категория реферата: Рефераты по философии
Теги реферата: конспект по русскому языку, как лечить шпоры
Добавил(а) на сайт: Shuljak.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
4. Коррекция определения числа и аксиома бесконечности
Формулировка парадокса затрагивает не только противоречивость рассуждения, но и другой важный аспект логицистской программы Г.Фреге, который связан с определением арифметических понятий в логических терминах. Определение числа по Фреге, как оно было сформулировано выше, требует рассматривать классы, состоящие из элементов, принадлежащих к различным типам. Например, уже определение числа два предполагает класс, образованный из нуль-класса и класса, элементом которого является сам нуль-класс. Однако именно это и содержит парадокс, который обнаружил Рассел. Рассел сохраняет логицистскую установку на то, что арифметика сводима к логике, но в свете установленного противоречия определение числа должно быть модифицировано таким образом, чтобы исключить смешение типов.
Рассел выходит из затруднения следующим образом[7] . Он сохраняет общий фрегеанский подход к числу с точки зрения классов, находящихся во взаимно-однозначном соответствии. Сохраняет он и определение нуля как класса неравных самим себе объектов. Модификация определения начинается с числа один. Число один соответствует классу всех классов, находящихся во взаимно-однозначном соответствии с классом, содержащим один объект. Число два соответствует классу всех классов, находящихся во взаимно-однозначном соответствии с классом, который состоит из объекта, использованного при определении числа один, плюс новый объект и т.д. Определение, построенное таким способом, избегает парадокса, поскольку соблюдает требование теории типов. Объекты, используемые при определении чисел, принадлежат одному и тому же типу. Однако оно требует введения дополнительного постулата. Определение каждого последующего числа в последовательности натуральных чисел требует нового объекта. Но поскольку натуральный ряд бесконечен, постольку должно предусматриваться и бесконечное количество объектов. Так в логической системе Рассела возникает аксиома бесконечности, а именно допущение о том, что любому заданному числу n соответствует некоторый класс объектов, имеющий n членов[8] .
5. Логические фикции и аксиома сводимости
В Principia Mathematica , труде, в котором Рассел совместно с Уайтхедом попытались последовательно развить предпосылки логицизма, теория типов, аксиома бесконечности и рассматриваемая ниже аксиома сводимости включаются в число логических предложений. Однако здесь возникает проблема, связанная со статусом данных положений. Характеристика различных уровней бытия, предложенная теорией типов, или аксиома бесконечности, характеризующая совокупность предметов в мире, выходит за рамки аналитического знания. Разрабатывая теорию типов, Рассел говорит о недопустимости определенной комбинации символов в языке логики. Однако то, что он имеет в виду, выходит за рамки символической комбинаторики, поскольку сами по себе символы основания для такого запрета не дают. Ограничения возможны только тогда, когда в расчет принимается определенная интенция значения. Стало быть, теория типов основана на онтологической предпосылке о допустимых видах значений и существенно от нее зависит.
Формулируя теорию типов, Рассел говорит о классах, но это не означает, что он допускает их реальное существование, поскольку это возрождало бы иерархическую структуру бытия в смысле Платона, и даже превосходило бы предложенное последним удвоение реальности, так как предполагало бы ее умножение ad infinitum соответственно умножению различных типов знаков. Кроме того, с реальностью классов связан ряд следствий, принять которые Расселу мешает установка на здравый смысл. Согласно способу построения классов из любой совокупности n предметов можно образовать 2 n классов. Например, взяв совокупность из трех предметов a , b , c , можно образовать восемь классов. Это следующие классы: нулевой класс, классы { a }, { b } и { c }; затем, { bc }, { ca }, { ab }, { abc }. Рассмотрим теперь совокупность всех вещей, существующих в мире. Очевидно, что число классов, образованных из этих вещей, будет больше числа их самих, поскольку 2 n всегда больше, чем n . Теперь, если мы принимаем реальность классов, получается парадоксальный вывод. Оказывается, что число всех действительно существующих вещей меньше, чем их имеется на самом деле. Рассел не принимает этого парадоксального вывода, выходя из положения тем, что дифференцирует понятие существования соответственно типам значений. Говорить о существовании индивидов – это совершенно иное, чем говорить о существовании составленных из них классов. Последнее есть лишь fa c on de parle r , от которого при желании всегда можно избавиться. Здесь возникает концепция неполных символов, рассматривающая классы как логические фикции. Надлежащая трактовка классов должна исключить их из перечня самостоятельных сущностей, а то, что мы рассматриваем как обозначение классов, должно быть сведено к обозначению сущностей, не вызывающих сомнений в своем существовании.
Осуществляя подобную редукцию, Рассел отталкивается от того, что класс может быть однозначно задан как система значений некоторой высказывательной функции, а стало быть, все, что можно сказать о классах, с успехом переводимо на язык функций: «Вы хотите сказать о пропозициональной функции, что она иногда является истинной. Это то же самое, как если о классе говорят, что он имеет члены. Вы хотите сказать, что это истинно в точности для 100 значений переменных. Последнее одинаково с тем, когда о классе говорят, что он имеет сто членов. Все то, что вы хотите сказать о классах, одинаково с тем, что вы хотите сказать о пропозициональных функциях, исключая случайные и неуместные лингвистические формы»[9] . Так утверждение, что класс спутников Марса включает два элемента, заменимо на утверждение о том, что пропозициональная функция ‘спутник Марса (х)’ истинна ровно при двух значениях переменной.
При замене классов на функции возникают некоторые проблемы, краткую экспозицию которых мы сейчас представим. Один и тот же класс можно задать с помощью различных функций. Например, класс людей будет задавать и функция “бесперое, двуногое (х)” и “политическое животное (х)”. Такие функции (т.е. функции, которые удовлетворяет одинаковый набор аргументов), Рассел называет формально эквивалентными. А раз эти функции специфицируют один и тот же класс предметов, то в некоторых контекстах их можно заменить друг на друга, причем истинность целого не изменится, как, например, в “Сократ является бесперым и двуногим”. Такие контексты Рассел называет экстенсиональными. Эти контексты не допускают двусмысленностей; входящие в них функции вполне можно рассматривать вместо классов. Причем все, что можно сказать о какой-либо функции, будет приложимо и к функции, формально ей эквивалентной. Значит, любое высказывание о классе можно заменить высказыванием об одной из формально эквивалентных функций, однозначно этот класс специфицирующей. Однако здесь возникает проблема. Дело в том, что не всегда то, что можно сказать об одной формально эквивалентной функции, будет приложимо к другой. Примером такого неэкстенсионального контекста может служить высказывание “Платон утверждал, что бесперость и двуногость однозначно определяют человека”. В него входит функция ‘двуногое и бесперое (х)’, но попытка заменить ее на функцию ‘политическое животное (х)’ сделает высказывание ложным. Следовательно, не все, что можно сказать об одной функции, приложимо к другой. Однако Рассел считает, что можно сконструировать такую формально эквивалентную функцию, которая удовлетворяла бы требуемому свойству. Другими словами, и для ‘бесперое, двуногое (х)’ и для ‘политическое животное (х)’, существует формально эквивалентная функция, которая однозначно определяет класс людей и при этом является экстенсиональной. В общем случае, если имеется высказывание, изменяющее свое истинностное значение при замене одной формально эквивалентной функции на другую, всегда можно сконструировать функцию формально, эквивалентную исходным функциям, которая будет экстенсиональной. С ее помощью и можно любое высказывание о классе преобразовать в высказывание о функции.
Единственное ограничение, накладываемое Расселом на образование такой функции, связано с требованием теории типов. Она должна указывать предикативное свойство соответствующего класса. Различие между предикативными и непредикативными свойствами можно проиллюстрировать следующим примером. Рассмотрим свойство быть человеком и свойство иметь все свойства человека. И то и другое относятся к одному и тому же классу предметов, но в отличие от первого, второе свойство имеет в виду и само себя. Так как если мы утверждаем, что Сократ имеет все свойства человека, то наряду с приписыванием ему свойств быть двуногим и бесперым, быть политическим животным и т.д. мы приписываем ему и свойство иметь все свойства человека. Непредикативное свойство самореферентно, т.е. указывает и на само себя. Соответственно, функция, выражающая самореферентное свойство, будет применяться сама к себе, что, как было показано выше, приводит к парадоксу. С точки зрения Рассела, функции, выражающие непредикатитвные свойства, должны относиться к более высокому типу, чем функции, выражающие предикативные свойства, несмотря на то, что они специфицируют один тот же класс. Таким образом, функции, как и классы, должны рассматриваться в строгой иерархии, которая конструируется Расселом в разветвленной теории типов.
Утверждение о существовании формально эквивалентной предикативной функции, которая может заменить класс во всех контекстах, доказать конструктивными средствами невозможно. Поэтому Рассел принимает его как аксиому, так называемую аксиому сводимости, которая формулируется следующим образом: «Существует такая формально эквивалентная предикативная функция f , что для всякого x аргумент x удовлетворяет функцию f тогда и только тогда, когда он удовлетворяет функцию f ». Символически:
u ? ( $ f ) ( x ) ( fx ? f ! x ),
где ‘ ? ’ знак тождества, а ‘!’ в выражении ‘ f ! x ’ указывает на предикативность функции f .
6. Примитивные значения и теория дескрипций
Рассмотрение отношений, чисел и классов демонстрирует один важный принцип, который практикует Рассел. Логический анализ воспринимается им как метод, который устанавливает критерий того, что может рассматриваться как реально существующее, а что нет. Например, отношения, которые нельзя редуцировать к свойствам, реальны, а числа и классы – нет, поскольку вторые суть фикции, так как редуцируемы к пропозициональным функциям, а первые суть фикции фикций, так как редуцируемы к классам. Основная проблема, обнаруживаемая данным анализом, связана с использованием определенных выразительных средств. Дело в том, что язык, повседневно используемый для выражения мыслей, скрывает их действительную структуру. Задача философского исследования – выявить эту структуру и зафиксировать с помощью искусственного языка, который был бы свободен от двусмысленностей языка естественного. Искусственный язык должен способствовать освобождению выражений науки от компонентов, имеющих фиктивное значение. Особый смысл в таком исследовании приобретает логика, формальные методы которой и позволяют разработать такой язык. Последующее расширение границ и методов формального анализа ставится Расселом в зависимость от того, что рассматривать в качестве допустимых типов значения.
Обнаружение средствами логического анализа фикций ставит перед Расселом проблему того, что можно считать примитивным, далее нередуцируемым значением и что должен представлять собой символ, такому значению удовлетворяющий. При всей неопределенности понятия примитивного значения, независимо от того, затребовано это понятие сугубо логическими потребностями или же нет, у Рассела оно связано с принимаемыми теоретико-познавательными установками, и в частности с разрабатываемым им разделением знания на два разнородных типа: во-первых, знание по знакомству; во-вторых, знание по описанию. Концепция двух типов знания лежит в основании второй из указанных выше детерминаций творчества Рассела и также оказывает значительное влияние на интерпретацию логических идей, но характеризует уже не онтологическое содержание развиваемой им логики, а ее теоретико-познавательное значение. В основании любого знания, считает Рассел, лежит непосредственное знакомство с объектом: «Мы говорим, что знакомы с чем-либо, если нам это непосредственно известно, – без посредства умозаключений и без какого бы то ни было знания суждений (истины)»[10] . Любое другое знание может рассматриваться только в качестве опосредованного логическими структурами мышления, интегрирующего языковые средства, либо в качестве выводного знания, либо в качестве указания на фиксированные свойства, включенные в структуру описания предмета. В последнем случае «мы знаем описание, и мы знаем, что есть какой-то предмет, точно соответствующий этому описанию, но сам этот предмет нам непосредственно не известен. В этом случае мы говорим, что наше знание предмета есть знание предмета по описанию»[11] . Рассел не считает описание какой-то новой познавательной процедурой, отличной от тех, что предлагали традиционные теории познания. Оно не есть новый логический элемент наряду с понятием, суждением и умозаключением. «Знание вещей по описанию всегда предполагает в качестве своего источника некоторое знание истинных суждений», таким образом, «все наше знание, как знание вещей, так и знание суждений (истины), строится на знании-знакомстве, как на своем фундаменте»[12] . Рассел отводит логике роль своеобразной редукционной процедуры, связанной с аналитическим смыслом самого философствования, поскольку «основной принцип в анализе положений, содержащих описание, гласит: каждое предложение, которое мы можем понять, должно состоять лишь из составных частей, нам непосредственно знакомых»[13] .
Таким образом, конституенты выражений должны сводиться к элементарным символам, значение которых нам непосредственно знакомо. Что же можно рассматривать в качестве примитивных, неопределяемых далее значений? Представленный выше анализ показывает, что к таковым относятся отношения, а стало быть, и свойства, которые всегда редуцируемы к отношениям. И те и другие Рассел обозначает как универсалии, и в качестве выражения последних служат пропозициональные функции. Примитивными значениями будут в таком случае универсалии учитель, ученик, любить, красное и т.д. Соответственно допустимы выражающие их пропозициональные функции ‘учитель ( x , y )’, ‘ученик ( x , y )’, ‘любит ( x , y )’, ‘красное ( x )’ и т.д.
Анализ пропозициональных функций, представляющих один из необходимых компонентов высказывания, выводит на дальнейшее исследование. Для образования целостного высказывания функции необходимо дополнить выражениями, занимающими аргументные места, чьим предметным значением являются индивиды. На эту роль могут претендовать те символы, которые указывают на самостоятельные предметы и которые, как и универсалии, известны нам непосредственно. Однако роль такого указания могут выполнять два различных, как считает Рассел, типа символов: собственные имена и описания (дескрипции). Основное различие между ними в том, что понимание собственного имени зависит от непосредственного знакомства с объектом, тогда как описание мы понимаем, зная значение конституент, из которых оно состоит. Примерами первых можно считать то, что в повседневном языке обычно понимается под собственными именами, скажем, ‘Сократ’ или ‘Вальтер Скотт’[14] ; примерами вторых – такие выражения, как ‘учитель Платона’, ‘автор Веверлея’ и т.д. Заметим, что различие, проводимое Расселом, отличается от соответствующего подхода Г.Фреге, который и те и другие выражения считал именами, указывающими на один и тот же предмет посредством различного смысла. Рассел стремится избавиться от такой сомнительной сущности, как смысл, которому Фреге придает субстанциальное содержание. Поэтому он считает, что непосредственное знакомство с предметом должно отличаться от его описания. Критерием здесь должна служить комплексность описания, поскольку смысл, согласно Расселу, усваивается из комбинации знаков, обладающих примитивным значением, тогда как понимание последних обретается только в непосредственном знакомстве с тем, что они обозначают. Мы понимаем выражения ‘автор Веверлея’ или ‘нынешний король Франции’, даже не имея представления о том человеке, на которого они могут указывать, но значение собственного имени в этом смысле понять нельзя, его можно усвоить только при непосредственном знакомстве. Этот критерий проявляется при рассмотрении определенных контекстов, где собственные имена и дескрипции функционируют по-разному.
В качестве иллюстрации рассмотрим применение этой теории к анализу контекстов существования. Возьмем предложение, где существование комбинируется с собственным именем, например “Сократ существует”. С точки зрения Рассела, это предложение, как и любое подобное ему, является бессмысленным, поскольку функция собственных имен заключается в непосредственном указании или знании через знакомство, а существование полностью выражается квантором. Квантор же применим только к переменной некоторой пропозициональной функции. А так как ‘Сократ’ – это не переменная, а константа, непосредственно указывающая на объект, то значением данного выражения не может являться истина или ложь; оно в буквальном смысле бессмысленно. Действительное имя самим своим фактом уже говорит о существовании предмета, который оно называет. Поэтому в контекстах существования осмысленно могут встречаться только описательные имена. Предложение “Учитель Платона существует”, например, в отличие от приведенного выше, вполне осмысленно, несмотря на то, что они на первый взгляд имеют одинаковую структуру. О чем же говорит последнее предложение? С точки зрения Рассела, в нем утверждаются две вещи: 1) имеется по крайней мере один учитель Платона, 2) имеется не более одного учителя Платона, поскольку при невыполнимости хотя бы одного из этих условий оно было бы ложным. Структура дескрипции, таким образом, включает пропозициональную функцию, где к переменной как раз и применим квантор существования. Символически это выражается следующим образом:
( $ x )( fx ? ( y )( fy E x = y ))
Теперь сравним приведенный пример с предложением “Сократ – учитель Платона”. Структура этого предложения включает уже три значимых элемента: 1) имеется по крайней мере один учитель Платона, 2) имеется не более одного учителя Платона, 3) этот человек есть не кто иной, как Сократ. Символически:
( $ x )( fx ? ( y )( fy E x = y )) ? fa
Действительно, отрицая любой из этих трех элементов мы вынуждены были бы признать ложность целого. Значимые элементы первого предложения полностью совпадают с двумя первыми элементами второго предложения, а значит, второе предложение уже подразумевает первое в том смысле, что предложение “Учитель Платона существует” логически следует из предложения “Сократ – учитель Платона”. Таким образом, использование определенных дескрипций уже предполагает существование соответствующего объекта.
Создавая оригинальную логическую концепцию существования, основанную на анализе терминов, Рассел применяет ее к решению ряда проблем, например к проблеме функционирования фиктивных имен (т.е. выражений, которым не соответствует никакой реальный объект, но которые по видимости указывают на таковой), скажем ‘Пегас’, ‘Одиссей’ и т.д. Выражения подобного рода, несмотря на то, что в предложениях они на первый взгляд выполняют функцию имен, очевидно, не являются таковыми, поскольку не указывают ни на какой реальный предмет, т.е. не выполняют функцию знакомства. Согласно Расселу они являются скрытыми дескрипциями, которым обыденное употребление придает видимость действительных имен. Как дескрипции, хотя и скрытые, они должны удовлетворять соответствующей структуре. Следовательно, высказывание о несуществующем объекте всегда будет ложным, поскольку в структуру дескрипции включено утверждение о существовании объекта.
Или возьмем в качестве примера выражение “Нынешний король Франции лыс”. Принимая логический закон исключенного третьего, мы должны были бы заключить, что истинно или это высказывание, или высказывание “Нынешний король Франции не лыс”; но и то и другое очевидно неверно, и дело здесь не в смысле выражения ‘нынешний король Франции’. Проблема в самом выражении, которое не является именем, а представляет собой дескрипцию, предполагающую, что ее предмет существует. Поскольку это предположение ложно, ложными будут и первое и второе высказывание. В символическом выражении, где первое высказывание записывается как
( $ x )( fx ? ( y )( fy E x = y )) ? fa ,
а второе как
( $ x )( fx ? ( y )( fy E x = y )) ? ~ fa ,
это видно непосредственно, поскольку ложным является член логического умножения ‘( $ x ) fx ’, выявленный в процессе анализа дескрипции.
Рекомендуем скачать другие рефераты по теме: особенности реферата, реферат скачать без регистрации.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата