Влияние математики на философию и логику
Категория реферата: Рефераты по философии
Теги реферата: сочинение 6 класс, мировая экономика
Добавил(а) на сайт: Нюхалов.
1 2 3 4 | Следующая страница реферата
АКАДЕМИЯ ГРАЖДАНСКОЙ ЗАЩИТЫ
Реферат по теме:
«Влияние математики на философию и логику»
Выполнил: Русскин А. В.
Проверил: Ксенофонтов В. Н.
Новогорск - 2005
Содержание.
1. Введение……………………………………………………………3
2. Влияние математики на философию…………….………………..4
3. Соотношение математики и логики………………….…………...19
4. Заключение…………………………………………………………31
5. Литература………………………………………………………….32
1. Введение.
Математика оказала огромное влияние на философию и логику. Это
просматривается в работах Зенона, Пифагора и пифагорейцев, Декарта,
Рассела, Платона, Канта и многих других. Многие мыслители пришли к
философии и логике через математику. Числа и числовые отношения
рассматривались как ключ к пониманию вселенной и ее структуры. Так, Галилей
говорил: “ Книга природы написана на языке математики.”
2. Влияние математики на философию.
Влияние математики на философию просматривается в
знаменитых рассуждения древнегреческого философа Зенона «Ахиллес и
черепаха», «Дихотомия» и др., называемых обычно апо-риями (затруднениями).
Они были направлены будто бы против движения и существования многих вещей.
Сама идея доказать, что мир — это одна-единственная и к тому же неподвижная
вещь, нам сегодня кажется странной. Странной она казалась и древним. Нас-
только странной, что доказательства, приводившиеся Зеноном, сразу же были
отнесены к простым уловкам, причем лишенным в общем-то особой хитрости.
Такими они и считались две с лишним тысячи лет, а иногда считаются и
теперь. Посмотрим, как они формулиру-ются, и обратим внимание на их внешнюю
простоту и незамыслова-тость.
В «Ахиллес и черепаха» говорится, что самое быстрое существо не способно догнать самое медленное, быстроногий Ахиллес ни-когда не настигнет медлительную черепаху. Пока Ахиллес добежит до черепахи, она продвинется немного вперед. Он быстро преодо-леет и это расстояние, но черепаха уйдет еще чуточку вперед.
И так до бесконечности. Всякий раз, когда Ахиллес будет достигать места, где была перед этим черепаха, она будет оказываться хотя бы немного, но впереди.
В «Дихотомии» обращается внимание на то, что движущийся предмет
должен дойти до половины своего пути прежде, чем он достигнет его конца.
Затем он должен пройти половину оставшейся половины, затем половину этой
четвертой части и т.д. до бесконечности. Предмет будет постоянно
приближаться к конечной точке, но так никогда ее не достигнет.
Это рассуждение можно несколько переиначить. Чтобы пройти половину пути, предмет должен пройти половину этой половины, а для этого нужно пройти половину этой четверти и т.д. Предмет в итоге так и не сдвинется с места.
Этим простеньким на вид рассуждениям посвящены сотни фило-софских и научных работ. В них десятками разных способов доказы-вается, что допущение возможности движения не ведет к абсурду, что наука геометрия свободна от парадоксов и что математика спо-собна описать движение без противоречия.
Обилие опровержений доводов Зенона показательно. Не вполне ясно, в чем именно состоят эти доводы, что они доказывают. Не ясно, как это «что-то» доказывается и есть ли здесь вообще доказа-тельство? Чувствуется только, что какие-то проблемы или затруд-нения все-таки есть. И прежде чем опровергать Зенона, нужно выяс-нить, что именно он намеревался сказать и как он обосновывал свои тезисы. Сам он не формулировал прямо ни проблем, ни своих реше-ний этих проблем. Есть, в частности, только коротенький рассказ, как Ахиллес безуспешно пытается догнать черепаху.
Извлекаемая из этого описания мораль зависит, естественно, от того более широкого фона, на котором оно рассматривается и меня-ется с изменением этого фона.
Рассуждения Зенона сейчас, надо думать, окончательно выведены из разряда хитроумных уловок. Они, по словам Б. Рассела, «в той или иной форме затрагивают основания почти всех теорий прост-ранства, времени и бесконечности, предлагавшихся с его времени до наших дней».
Понять, какой вклад внесла математика в философию, можно, изучая учения Пифагора и пифагорейцев. Интересно понимание числа у ранних пифагорейцев.
С самого начала существования религиозного ордена, учрежденного
Пифагором, в нем ставились практически-нравственные и религиозные цели:
очищение человеческой души для спасения ее от круговорота рождений и
смертей. Поэтому существовал целый ряд строгих предписаний, регламентировавших жизнь членов ордена. Одним из важнейших средств очищения
пифагорейцы считали научные занятия, прежде всего занятия математикой и
музыкой. Как отмечает А.О. Маковельский, "вера в религиозно-катартическое
действие науки дала силы Пифагору положить основание чистой математики".
Действительно, именно в Греции мы наблюдаем изменение роли
математического знания по сравнению с той, какую оно играло в Египте и
Вавилоне. Там математика, как уже отмечалось, носила практически-прикладной
характер, она была техникой расчета, решения задач. При характерном для
древнего мира делении всех сфер жизни на сакральные и профанные (священные
и светские) математика принадлежала ко второй. Без ее помощи не могли
обойтись землемеры и купцы, строители и мореходы, но она не имела
непосредственного отношения к мифологическим представлениям и религиозным
культам. Но это не противоречит тому известному факту, что некоторым числам
в древнем мире придавалось сакрально-мифологическое значение; к ним
относится, например, число пять в Древнем Китае или число семь, игравшее
важную роль в религиозно-мифологических и магических представлениях
вавилонян и египтян более чем за два тысячелетия до н.э. Вот что пишет
американская исследовательница Л. Торндайк, анализируя сакральное значение
семерки в Древней Вавилонии: "В древневавилонском эпосе о сотворении мира, например, семь духов бури, семь злых болезней, семь областей подземного
мира, закрытых семью дверями, семь поясов надземного мира и неба и т.д.
...Число семь было очень распространено, носило священный и мистический
характер, считалось совершенным и обладающим особой силой"21. Число семь
считалось сакральным не только у вавилонян, но и у древних евреев и греков:
в Ветхом Завете, у Гесиода и Гомера семерка выступает как священное число.
Как мы увидим далее, ранним греческим философам, и особенно пифагорейцам, отнюдь не было чуждо выделение сакральных чисел, к которым, кроме семерки, относили также тройку, а позднее - десятку (декаду). Но не само это
выделение священного числа и не перечисление различных "семериц" или
"декад" из разных областей природной жизни или человеческих установлений
составляли главное направление развития пифагорейской мысли.
Что же касается древних восточных культур, то в них математическое
исчисление, носившее практически-прикладной характер, не было внутренне
связано с выделением священных чисел - семерок, пятерок или троек.
Священное число выступало вовсе не как математическая реалия - к нему
обращались скорее либо в магических заклинаниях, где перечислялись
различные "семерицы" или практиковались тройные, семеричные и т.д.
ритуальные повторы, либо в других ритуальных культовых действиях.
Подбирались и перечислялись группы явлений или процессов, которые
представали как воплощение "семериц" и "троек", и эта процедура тоже
представляла собой одну из древних форм упорядочения и классификации
явлений, подобно тому как в племенах первобытных народов упорядочение
производится, например, по странам света, которым соответствуют
определенные цвета (черный, белый, красный и желтый), виды животных и т.д.
Таким образом, ни развитие математической техники счета и решения задач, принадлежавшее сфере хозяйственно-практической, ни выделение священных
чисел, имевшее ритуальное, культовое и мифологическое значение, не привело
на Древнем Востоке к возникновению математики как системы теоретического
знания.
Пифагорейцы первыми возвысили математику до ранее неведомого ей ранга:
числа и числовые отношения они стали рассматривать как ключ к пониманию
вселенной и ее структуры. Они впервые пришли к убеждению, что "книга
природы написана на языке математики", как спустя почти два тысячелетия выразил эту мысль Галилей.
Для представлений о науке, как они сложились к XVII-XVIII вв., особенно у
философов эпохи Просвещения, характерно убеждение в том, что наука по
своему существу противоположна религии. Это представление отражает тот
период в развитии науки, когда ученым приходилось вести борьбу с религией
за возможность свободного научного исследования. Но применительно к другим
периодам развития науки это представление оказывается не всегда
справедливым. Исторически научное знание вступало в самые различные - и
порой весьма неожиданные - отношения с мифологической, религиозной и
художественной формами сознания. Так, перемещение математических
исследований из сферы практически-прикладной в сферу философско-
теоретическую, еще не отделившуюся от религиозно-мистического восприятия
мира, послужило тем историческим фактором, благодаря которому математика
превратилась в теоретическую науку.
Нет ничего удивительного в том, что мыслители, впервые попытавшиеся не просто технически оперировать с числами (т.е. вычислять), но понять саму сущность числа, сущность множества и характер отношений различных множеств друг к другу, решали эту задачу первоначально в форме объяснения всей структуры мироздания с помощью числа как первоначала. Прежде чем появилась математика как теоретическая система, возникло учение о числе как некотором божественном начале мира, и это, казалось бы, не математическое, а философско-теоретическое учение сыграло роль посредника между древней восточной математикой как собранием образцов для решения отдельных практических задач и древнегреческой математикой как системой положений, строго связанных между собой с помощью доказательства. Вот почему нам кажется неправомерной попытка некоторых историков науки принципиально отделить пифагорейских математиков эпохи Платона от ранних пифагорейцев.
Исторические источники свидетельствуют, что Пифагор занимался не только
математикой. Так, Гераклит упрекает его в "многознании": "Пифагор, сын
Мнесарха, предался исследованию больше всех людей и, выбрав для себя эти
сочинения, составил себе (из них) свою мудрость: многознание и обман".
Помимо учения о бессмертии души, ее божественной природе и ее
перевоплощениях, Пифагор учил о том, что все в мире есть число, занимался
исследованием числовых отношений как в чистом виде, так и применительно к
музыкальной гармонии, которая, по преданию, именно им была открыта. Ему, видимо, принадлежит также учение о беспредельном и пределе и представление
о беспредельном как четном, а о пределе - как нечетном числе.
Рекомендуем скачать другие рефераты по теме: доклад по обж, реферат на тему русь русь.
1 2 3 4 | Следующая страница реферата