Газовые лазеры
Категория реферата: Рефераты по физике
Теги реферата: курсовая работа по менеджменту, оформление реферата
Добавил(а) на сайт: Амелфа.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
В последние годы в одной из важнейших областей микроэлектроники - фотолитографии, без применения которой практически невозможно изготовление сверхминиатюрных печатных плат, интегральных схем и других элементов микроэлектронной техники, обычные источники света заменяются на лазерные. С помощью лазера на ХеСL (1=308 нм) удается получить разрешение в фотолитографической технике до 0,15-0,2 мкм.
Дальнейший прогресс в субмикронной литографии связан с применением в качестве экспонирующего источника света мягкого рентгеновского излучения из плазмы, создаваемой лазерным лучом. В этом случае предел разрешения, определяемый длиной волны рентгеновского излучения (1=0,01-0,001 мкм), оказывается просто фантастическим.
Второй вид лазерной технологии основан на применении лазеров с большой средней мощностью от 1кВт и выше. Мощные лазеры используют в таких энергоемких технологических процессах, как резка и сварка толстых стальных листов, поверхностная закалка, направление и легирование крупногабаритных деталей, очистка зданий от загрязненных поверхностей, резка мрамора, гранита, раскрой тканей, кожи и других материалов. При лазерной сварке металлов достигается высокое качество шва и не требуется применение вакуумных камер, как при электроннолучевой сварке, а это очень важно в конвейерном производстве.
Мощная лазерная технология нашла применение в машиностроении, автомобильной промышленности, промышленности строительных материалов. Она позволяет не только повысить качество обработки материалов, но и улучшить технико-экономические показатели производственных процессов. Так, скорость лазерной сварки стальных листов толщиной 14 мкм достигает 100м/ч при расходе электроэнергии 10 кВт/ч.
ГАЗОВЫЕ ЛАЗЕРЫ
Газовыми называются лазеры, в которых активной средой являются газ, смесь нескольких газов или смесь газов с парами металла.
Газовые лазеры представляют собой, пожалуй, наиболее широко используемый в настоящее время тип лазеров и, возможно, в этом отношении они превосходят даже рубиновые лазеры. Газовым лазерам также, по-видимому, посвящена большая часть выполненных исследований. Среди различных типов газовых лазеров всегда можно найти такой, который будет удовлетворять почти любому требованию, предъявляемому к лазеру, за исключением очень большой мощности в видимой области спектра в импульсном режиме. Большие мощности необходимы для многих экспериментов при изучении нелинейных оптических свойств материалов. В настоящее время большие мощности в газовых лазерах не получены по той простой причине, что плотность атомов в них недостаточно велика. Однако почти для всех других целей можно найти конкретный тип газового лазера, который будет превосходить как твердотельные лазеры с оптической накачкой, так и полупроводниковые лазеры. Много усилий было направлено на то, чтобы эти лазеры могли конкурировать с газовыми лазерами, и в ряде случаев был достигнут определенный успех, однако он всегда оказывался на грани возможностей, в то время как газовые лазеры не обнаруживают никаких признаков уменьшения популярности.
Особенности газовых лазеров большей часто обусловлены тем, что они, как правило, являются источниками атомных или молекулярных спектров.
Поэтому длины волн переходов точно известны, они определяются атомной
структурой и обычно не зависят от условий окружающей среды. Стабильность
длины волны генерации при определенных усилиях может быть значительно
улучшена по сравнению со стабильностью спонтанного излучения. В настоящее
время имеются лазеры с монохроматичностыо, лучшей, чем в любом другом
приборе. При соответствующем выборе активной среды может быть осуществлена
генерация в любой части спектра, от ультрафиолетовой (~2000А) до далекой
инфракрасной области (~ 0,4 мм), частично захватывая микроволновую область.
Нет также оснований сомневаться, что в будущем удастся создать лазеры для
вакуумной ультрафиолетовой области спектра. Разреженность рабочего газа
обеспечивает оптическую однородность среды с низким коэффициентом
преломления, что позволяет применять простую математическую теорию для
описания структуры мод резонатора и дает уверенность в том, что свойства
выходного сигнала близки к теоретическим. Хотя к. п. д. превращения
электрической энергии в энергию вынужденного излучения в газовом лазере не
может быть таким большим, как в полупроводниковом лазере, однако благодаря
простоте управления разрядом газовый лазер оказывается для большинства
целей наиболее удобным в работе как один из лабораторных приборов. Что
касается большой мощности в непрерывном ре жиме (в противоположность
импульсной мощности), то природа газовых лазеров позволяет им в этом
отношении превзойти все другие типы лазеров.
Особенностью активной среды, находящейся в газовой фазе, является ее высокая оптическая однородность, что позволяет применять большие оптические длины резонатора и вследствие этого получать высокую направленность и монохроматичность излучения.
Типичный лазер на нейтральных атомах (атомарный) – это газоразрядный гелий-неоновый лазер, в котором используется смесь гелия и неона в соотношении примерно 10:1,5:1 при общем давлении в газоразрядной трубке около 80 Па. Вынужденное излучение создается атомами неона, а атомы гелия участвуют лишь в передачи энергии атомам неона (рис 1.)
При возбуждении газовой смеси электрическим током (постоянным или
переменным с частотой около 30 МГц) возникает тлеющий разряд, подобный
разряду в рекламной неоновой лампе. В электрическом разряде часть атомов
неона переходит с основного уровня Е1 на долгоживущие возбужденные уровни
Е4 и Е5. Инверсия населенностей создается благодаря большей населенности
этих уровней по сравнению с короткоживущим уровнем Е3. В чистом неоне
созданию инверсии населенности мешает метастабильный уровень Е2, поэтому
полезным оказалось введения в рабочую смесь гелия.
Под действием электрического разряда часть атомов гелия ионизируется
и образуется плазма, содержащая электроны с большой кинетической энергией.
Эти электроны, сталкиваясь с атомами гелия, переводят их из основного
состояния Е1 на долгоживущие возбужденные уровни Е2 и Е3, которые близки к
уровням Е4 и Е5 неона. Поэтому при столкновениях возбужденных атомов гелия
с невозбужденными атомами неона возникает высокая вероятность резонансной
передачи возбуждения, в результате чего атомы неона оказываются на уровнях
Е4 и Е5, а атомы гелия возвращаются в основное состояние. Вероятность
возбуждения атомов неона до уровней Е2 и Е3 за счет столкновений с атомами
гелия мала, так как энергия этих состояний существенно отличается от
энергии уровней Е2 и Е3 гелия. Таким образом, использование
вспомогательного газа – гелия дает возможность осуществить дополнительно
заселение энергетических уровней неона и получить инверсию населенностей
между уровнями Е3 и Е4 , Е5 .
Поскольку уровень Е3 неона является короткоживущим, на переходах
Е4(Е3 и Е5(Е3, можно получить непрерывную генерацию. Переходу Е4(Е3
соответствует генерация в ближней инфракрасной области с длиной волны 1,153
мкм, а переходу Е5(Е3 – в красной области видимого спектра с длиной волны
0,6328 мкм. Каждый из уровней Е3, в диапазоне видимого и инфракрасного
спектров гелий-неоновый лазер может содержать большое число (~130)
спектральных линий. Выделение нужной спектральной линии осуществляется
подбором зеркал оптического резонатора, введением в резонатор
диспергирующего или селективно поглощающего элемента, постоянного магнита.
Между уровнями Е4 и Е5 неона есть еще один короткоживущий уровень, переход
атомов на который с уровня Е5 позволяет получить генерацию на длине волны
3,392 мкм.
В гелий-неоновом лазере рабочая газовая смесь находится в
газоразрядной трубке, длина которой может достигать 0,2…1 м. Трубка
изготавливается из высококачественного стекла или кварца. Мощность
генерации существенно зависит от диаметра трубки. Увеличение диаметра
ведет к увеличению рабочей смеси, что способствует возрастанию мощности
генерации. Однако с увеличением диаметра трубки уменьшается электронная
температура плазмы, что приводит к уменьшению числа электронов, способных
возбуждать атомы газов, что в конечном итоге снижает мощность генерации.
Для уменьшения потерь торцы газоразрядной трубки закрыты
плоскопараллельными пластинками, которые расположены не перпендикулярно к
оси трубки, а так, чтобы нормаль к этой пластинке составляла с осью трубки
угол iБ=arctg n (n – показатель преломления материала пластинки), называемый углом Брюстера. Особенность отражения электромагнитной волны от
границы раздела различных сред под углом iБ широко применяется в лазерной
технике. Установка выходных окон кювета с активной средой под углом
Брюстера однозначно определяет поляризацию лазерного излучения. Для
излучения, поляризованного в плоскости падения, потери в резонаторе
минимальны. Естественно, именно это линейно-поляризованное излучение
устанавливается в лазере и является преобладающим.
Газоразрядная трубка помещена в оптический резонатор, который образован зеркалами с интерференционным покрытием. Зеркала закреплены во фланцах, конструкция которых позволяет поворачивать зеркала в двух взаимно перпендикулярных плоскостях при юстировке путем вращения юстировочных винтов. Возбуждение газовой смеси осуществляется путем подачи высокочастотного напряжения с блока питания на электроды. Блок питания представляет собой высокочастотный генератор, обеспечивающий генерирование электромагнитных колебаний с частотой 30 МГц при помощи в несколько десятков ватт.
Широко распространено питание газовых лазеров постоянным током при напряжении 1000…2000 В, получаемым с помощью стабилизированных выпрямителей. В этом случае газоразрядная трубка подогревным и холодным катодом и анодом. Для зажигания разряда в трубке используется электрод, на который подается импульсное напряжение около 12 кВ. это напряжение получают путем разряда конденсатора емкостью 1…2 мкФ через первичную обмотку импульсного трансформатора.
Достоинством гелий-неоновых лазеров являются когерентность их
излучения, малая потребляемая мощность (8…10 Вт) и небольшие размеры.
Основные недостатки – невысокий КПД (0,01…0,1 %) и низкая выходная
мощность, не превышающая 60 мВт. Эти лазеры могут работать в импульсном
режиме, если для возбуждения использовать импульсное напряжение большой
амплитуды при длительности в единицы микросекунд. Главные области
практического применения гелий-неоновых лазеров – научные исследования и
измерительная техника.
Из ионных лазеров наибольшее распространение получил аргоновый лазер непрерывного излучения на длине волны 0,48 мкм. Ионы аргона образуются в кювете в результате ионизации нейтральных атомов Ag II током большой плотности (~103 А/см3).
Инверсия населенностей в таком лазере между верхним (4p) и нижним
(4s) рабочими уровнями создается таким образом. Уровень 4p, имеющий по
сравнению с уровнем 4s большее время жизни, заселяются ионами аргона за
счет из столкновения с быстрыми электронами в газовом разряде за счет
переходов возбужденных ионов из группы расположенных выше уровней 5p. В то
же время уровень 5p, обладающий очень коротким временем жизни, быстро
опустошается за счет возвращения ионов в основное состояние. Так как уровни
5p, 5s, 4p состоят из групп подуровней, генерация может происходить
одновременно на нескольких длинах волн: от 0,45 до 0,515.
В настоящие время аргоновые ионные лазеры являются самыми мощными источниками непрерывного когерентного излучения в ультрафиолетовом и видимом диапазонах спектра. Широкому распространению мощных аргоновых лазеров мешают их высокая стоимость, сложность, малый КПД (~0,1 %) и большая потребляемая мощность (3…5 кВт).
КРАТКИЙ ИСТОРИЧЕСКИЙ ОБЗОР
Первые расчеты, касающиеся возможности создания лазеров, и первые
патенты относились главным образом к газовым лазерам, так как схемы
энергетических уровней и условия возбуждения в этом случае более понятны, чем для веществ в твердом состоянии. Однако первым был открыт рубиновый
лазер, хотя вскоре был создан и газовый лазер. В конце 1960 г. Джаван,
Беннет и Херриотт создали гелий-неоновый лазер, работающий в инфракрасной
области на ряде линий в районе 1 мкм. В последующие два года гелий-неоновый
лазер был усовершенствован, а также были открыты друг е газовые лазеры,
.работающие в инфракрасной области, включая лазеры с использованием других
благородных газов и атомарного кислорода. Однако наибольший интерес к
газовым лазерам был вызван открытием генерации гелий-неонового лазера на
красной линии 6328 А при условиях, лишь незначительно отличавшихся от
условий, при которых была получена генерация в первом газовом лазере.
Получение генерации в видимой области спектра стимулировало интерес не
только к поискам дополнительным переходов такого типа, но и к лазерным
применениям, так как при этом были открыты многие новые и неожиданные
явления, а лазерный луч получил новые применения в качестве лабораторного
инструмента. Два года, последовавшие за открытием генерации на линии 6328
А, были насыщены большим количеством технических усовершенствований, направленных главным образом на достижение большей мощности и большей
компактности этого типа лазера. Тем временем продолжались поиски новых длин
волн и были открыты многие инфракрасные и несколько новых переходов в
видимой области спектра. Наиболее важным из них является открытие Матиасом
и импульсных лазерных переходов в молекулярном азоте и в окиси углерода.
Следующим наиболее важным этапом в развитии лазеров было, по-
видимому, открытие Беллом в конце 1963г. лазера, работающего на ионах
ртути. Хотя лазер на ионах ртути сам по себе не оправдал первоначальных
надежд на получение больших мощностей в непрерывном режиме в красной и
зеленой областях спектра, это открытие указало новые режимы разряда, при
которых могут быть обнаружены лазерные переходы в видимой области спектра.
Поиски таких переходов были проведены также среди других ионов. Вскоре было
обнаружено, что ионы аргона представляют собой наилучший источник лазерных
переходов с большой мощностью в видимой области и что на них может быть
получена генерация в непрерывном режиме . В результате дальнейших
усовершенствований аргонового лазера в непрерывном режиме была получена
наиболее высокая мощность, какая только возможна в видимой области. В
результате поисков была открыта генерация на 200 ионных переходах, сосредоточенных главным образом в видимой, а также в ультрафиолетовой
частях спектра. Такие поиски, по-видимому, еще не окончены; в журналах по
прикладной физике и в технических журналах часто появляются сообщения о
генерации на новых длинах волн,
Тем временем .технические усовершенствования лазеров быстро
расширялись, в результате чего исчезли многие “колдовские” ухищрения первых
конструкций гелий-неоновых и других газовых лазеров. Исследования таких
лазеров, начатые Беннетом , продолжались до тех пор, пока не был создан
гелий-неоновый лазер, который можно установить на обычном столе с полной
уверенностью в том, что лазер будет функционировать так, как это ожидалось
при его создании. Аргоновый ионный лазер не исследован столь же хорошо;
однако большое число оригинальных работ Гордона Бриджеса и позволяет
предвидеть в разумных пределах возможные параметры такого лазера.
На протяжении последнего года появился ряд интересных работ, посвященных
газовым лазерам, однако еще слишком рано определять их относительную
ценность. Ко всеобщему удивлению наиболее важным достижением явилось
открытие Пейтелом генерации вынужденного излучения в СО2 на полосе 1,6 мк с
высоким КПД. выходная мощность в этих лазерах может быть доведена до сотен
ватт, что обещает открыть целую новую область лазерных применений.
Список использованной литературы:
1. Энциклопедический словарь юного физика (гл. редактор Мигдал А.Б.)
Рекомендуем скачать другие рефераты по теме: дипломная работа формирование, решебник по геометрии.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата