Лазерная технология - важнейшая отрасль современного естествознания
Категория реферата: Рефераты по физике
Теги реферата: шпаргалки, решебник по алгебре
Добавил(а) на сайт: Кизатов.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
При спонтанном излучении атом излучает спектральную линию конечной ширины При лавинообразном нарастании числа вынужденно испущенных фотонов в среде с инверсной населенностью интенсивность излучения этой лавины будет возрастать прежде всего в центре спектральной линии данного атомного перехода, и в результате этого процесса ширина спектральной линии первоначального спонтанного излучения будет уменьшаться. На практике в специальных условиях удается сделать относительную ширину спектральной линии лазерного излучения в 1*10000000-1*100000000 раз меньше, чем ширина самых узких линий спонтанного излучения, наблюдаемых в природе.
Кроме сужения линии излучения в лазере удается получить расходимость луча менее 0,00001 радиана, т. е. на уровне угловых секунд.
Известно, что направленный узкий луч света можно получить в
принципе от любого источника, поставив на пути светового потока ряд
экранов с маленькими отверстиями, расположенными на одной прямой.
Представим себе, что мы взяли нагретое черное тело и с помощью диафрагм
получили луч света, из которого посредством призмы или другого
спектрального прибора выделили луч с шириной спектра, соответствующей ширине спектра лазерного излучения. Зная мощность
лазерного излучения, ширину его спектра и угловую расходимость луча, можно с помощью формулы Планка вычислить температуру воображаемого
черного тела, использованного в качестве источника светового луча, зквивалентного лазерному лучу. Этот расчет приведет нас к фантастической
цифре: температура черного тела должна быть порядка десятков миллионов
градусов! Удивительное свойство лазерного луча - его высокая эффективная
температура (даже при относительно малой средней мощности лазерного
излучения или малой энергии лазерного импульса) открывает перед
исследователями большие возможности, абсолютно неосуществимые без
использования лазера.
Лазеры различаются: способом создания в среде инверсной населенности, или, иначе говоря, способом накачки (оптическая накачка, возбуждение электронным ударом, химическая накачка и т. п.); рабочей средой (газы, жидкости, стекла, кристаллы, полупроводники и т.д.); конструкцией резонатора; режимом работы (импульсный, непрерывный). Эти различия определяются многообразием требований к характеристикам лазера в связи с его практическими применениями.
ЛАЗЕРНАЯ ТЕХНОЛОГИЯ.
Лазеры нашли широкое применение, и в частности используются в промышленности для различных видов обработки материалов: металлов, бетона,стекла,тканей, кожи и т. п.
Лазерные технологические процессы можно условно разделить на два вида. Первый из них использует возможность чрезвычайно тонкой фокусировки лазерного луча и точного дозирования энергии как в импульсном, так и в непрерывном режиме. В таких технологических процессах применяют лазеры сравнительно невысокой средней мощности: это газовые лазеры импульсно-периодического действия, лазеры на кристаллах иттрий- алюминиевого граната с примесью неодима. С помощью последних были разработаны технология сверления тонких отверстий (диаметром 1 - 10 мкм и глубиной до 10 -100 мкм) в рубиновых и алмазных камнях для часовой промышленности и технология изготовления фильеров для протяжки тонкой проволоки. Основная область применения маломощных импульсных лазеров связана с резкой и сваркой миниатюрных деталей в микроэлектронике и электровакуумной промышленности, с маркировкой миниатюрных деталей, автоматическим выжиганием цифр, букв, изображений для нужд полиграфической промышленности.
В последние годы в одной из важнейших областей микроэлектроники - фотолитографии, без применения которой практически невозможно изготовление сверхминиатюрных печатных плат, интегральных схем и других элементов микроэлектронной техники, обычные источники света заменяются на лазерные. С помощью лазера на ХеСL (1=308 нм) удается получить разрешение в фотолитографической технике до 0,15 - 0,2 мкм.
Дальнейший прогресс в субмикронной литографии связан с применением в
качестве экспонирующего источника света мягкого рентгеновского излучения
из плазмы, создаваемой лазерным лучом. В этом случае предел
разрешения, определяемый длиной волны рентгеновского излучения (1= 0,01
- О,001 мкм), оказывается просто фантастическим.
Второй вид лазерной технологии основан на применении лазеров с большой средней мощностью: от 1 кВт и выше. Мощные лазеры используют в таких энергоемких технологических процессах, как резка и сварка толстых стальных листов, поверхностная закалка, наплавление и легирование крупногабаритных деталей, очистка зданий от поверхностей загрязнений, резка мрамора, гранита, раскрой тканей, кожи и других материалов. При лазерной сварке металлов достигается высокое качество шва и не требуется применение вакуумных камер, как при электроннолучевой сварке, а это очень важно в конвейрном производстве.
Мощная лазерная технология нашла применение в машиностроении, автомобильной промышленности, промышленности строительных материалов. Она позволяет не только повысить качество обработки материалов, но и улучшить технико-экономические показатели производственных процессов. Так, скорость лазерной сварки стальных листов толщиной 14 мКм достигает 100 мч при расходе электроэнергии 10 кВт. ч.
ГАЗОВЫЕ ЛАЗЕРЫ
Газовые лазеры представляют собой, пожалуй, наиболее широко используемый в настоящее время тип лазеров и, возможно, в этом отношении они превосходят даже рубиновые лазеры. Газовым лазерам также, по-видимому, посвящена большая часть выполненных исследований. Среди различных типов газовых лазеров всегда можно найти такой, который будет удовлетворять почти любому требованию, предъявляемому к лазеру, за исключением очень большой мощности в видимой области спектра в импульсном режиме. Большие мощности необходимы для многих экспериментов при изучении нелинейных оптических свойств материалов. В настоящее время большие мощности в газовых лазерах не получены по той простой причине, что плотность атомов в них недостаточно велика. Однако почти для всех других целей можно найти конкретный тип газового лазера, который будет превосходить как твердотельные лазеры с оптической накачкой, так и полупроводниковые лазеры. Много усилий было направлено на то, чтобы эти лазеры могли конкурировать с газовыми лазерами, и в ряде случаев был достигнут определенный успех, однако он всегда оказывался на грани возможностей, в то время как газовые лазеры не обнаруживают никаких признаков уменьшения популярности.
Особенности газовых лазеров большей часто обусловлены тем, что они, как правило, являются источниками атомных или
молекулярных спектров. Поэтому длины волн переходов точно
известны они определяются атомной структурой и обычно не зависят от
условий окружающей среды. Стабильность длины волны генерации при
определенных усилиях может быть значительно улучшена по сравнению со
стабильностью спонтанного излучения. В настоящее время имеются лазеры
с монохроматичностыо, лучшей, чем в любом другом приборе. При
соответствующем выборе активной среды может быть осуществлена генерация в
любой части спектра, от ультрафиолетовой (~2ООО А) до далекой
инфракрасной области (~ 0,4 мм), частично захватывая микроволновую
область. Нет также оснований сомневаться, что в будущем удастся
создать лазеры для вакуумной ультрафиолетовой области спектра.
Разреженность рабочего газа обеспечивает оптическую однородность среды с
низким коэффициентом преломления, что позволяет применять простую
математическую теорию для описания структуры мод резонатора и дает
уверенность в том, что свойства выходного сигнала близки к
теоретическим. Хотя к. п. д. превращения электрической энергии в энергию
вынужденного излучения в газовом лазере не может быть таким большим, как в полупроводниковом лазере, однако благодаря простоте управления
разрядом газовый лазер оказывается для большинства целей наиболее
удобным в работе как один из лабораторных приборов. Что
касается большой мощности в непрерывном ре жиме (в
противоположность импульсной мощности), то природа газовых лазеров
позволяет им в этом отношении превзойти все другие типы лазеров.
КРАТКИЙ ИСТОРИЧЕСКИЙ ОБЗОР
Первые расчеты, касающиеся возможности создания лазеров, и первые
патенты относились главным образом к газовым лазерам, так как схемы
энергетических уровней и условия возбуждения в этом случае более понятны, чем для веществ в твердом состоянии. Однако первым был открыт рубиновый
лазер, хотя вскоре был создан и газовый лазер. В конце 1960 г. Джаван,
Беннет и Херриотт создали гелий-неоновый лазер, работающий в
инфракрасной области на ряде линий в районе 1 мк. В последующие два года
гелий-неоновый лазер был усовершенствован, а также были открыты друг е
газовые лазеры, .работающие в инфракрасной области, включая лазеры с
использованием других благородных газов и атомарного кислорода. Однако
наибольший интерес к газовым лазерам был вызван открытием генерации гелий-
неонового лазера на красной линии 6328 А при условиях, лишь
незначительно отличавшихся от условий, при которых была получена генерация
в первом газовом лазере. Получение генерации в видимой области спектра
стимулировало интерес не только к поискам дополнительным переходов такого
типа, но и к лазерным применениям, так как при этом были открыты многие
новые и неожиданные явления, а лазерный луч получил новые применения в
качестве лабораторного инструмента. Два года, последовавшие за открытием
генерации на линии 6328 А, были насыщены большим количеством технических
совершенствований, направленных главным образом на достижение большей
мощности и большей компактности этого типа лазера. Тем временем
продолжались поиски новых длин волн и были открыты многие инфракрасные и
несколько новых переходов в видимой области спектра. Наиболее важным из
них является открытие Матиасом и сотр. импульсных лазерных переходов в
молекулярном азоте и в окиси углерода.
Следующим наиболее важным этапом в развитии лазеров было, по- видимому, открытие Беллом в конце 1963 г. лазера, работающего на ионах ртути. Хотя лазер на ионах ртути сам по себе не оправдал первоначальных надежд на получение больших мощностей в непрерывном режиме в красной и зеленой областях спектра, это открытие указало новые режимы разряда, при которых могут быть обнаружены лазерные переходы в видимой области спектра. Поиски таких переходов были проведены также среди других ионов. Вскоре было обнаружено, что ионы аргона представляют собой наилучший источник лазерных переходов с большой мощностью в видимой области и что на них может быть получена генерация в непрерывном режиме . В результате дальнейших усовершенствований аргонового лазера в непрерывном режиме была получена наиболее высокая мощность, какая только возможна в видимой области. В результате поисков была открыта генерация на 200 ионных переходах, сосредоточенных главным образом в видимой, а также в ультрафиолетовой частях спектра. Такие поиски, по-видимому, еще не окончены; в журналах по прикладной физике и в технических журналах часто появляются сообщения о генерации на новых длинах волн.
Тем временем .технические усовершенствования лазеров быстро
расширялись, в результате чего исчезли многие “колдовские” ухищрения
первых конструкций гелий-неоновых и других газовых лазеров. Исследования таких лазеров, начатые Беннетом, продолжались до тех пор, пока не
был создан гелий-неоновый лазер, который можно установить на обычном
столе с полной уверенностью в том, что лазер будет функционировать так, как это ожидалось при его создании. Аргоновый ионный лазер не
исследован столь же хорошо; однако большое число оригинальных работ
Гордона Бриджеса и сотр. позволяет предвидеть в разумных пределах
возможные параметры такого лазера.
На протяжении последнего года появился ряд интересных работ, посвященных газовым лазерам, однако еще слишком рано определять их относительную ценность. Ко всеобщему удивлению наиболее важным достижением явилось открытие Пейтелом генерации вынужденного излучения в СО2 на полосе 1,6 мк с высоким к.п.д. выходная мощность в этих лазерах может быть доведена до сотен ватт, что обещает открыть целую новую область лазерных применений.
Полупроводниковые лазеры.
Основным примером работы полупроводниковых лазеров является магнитно- оптический накопитель(МО).
Принципы работы МО накопителя.
МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание информации производится при помощи луча лазера и магнитного поля, а считование при помощи одного только лазера.
В процессе записи на МО диск лазерный луч нагревает определенные точки на диски, и под воздейстием температуры сопротивляемость изменению полярности, для нагретой точки, резко падает, что позволяет магнитному полю изменить полярность точки. После окончания нагрева сопротивляемость снова увеличивается нополярность нагретой точки остается в соответствии с магнитным полем примененным к ней в момент нагрева. В имеющихся на сегодняшний день МО накопителях для записи информации применяются два цикла, цикл стирания и цикл записи. В процессе стирания магнитное поле имеет одинаковую полярность, соответствующую двоичным нулям. Лазерный луч нагревает последовательно весь стираемый участок и таким образом записывает на диск последовательность нулей. В цикле записи полярность магнитного поля меняется на противоположную, что соответствует двоичной единице. В этом цикле лазерный луч включается только на тех участках, которые должны содержать двоичные единицы, и оставляя участки с двоичными нулями без изменений.
В процессе чтения с МО диска используется эффект Керра, заключающийся в изменении плоскости поляризации отраженного лазерного луча, в зависимости от направления магнитного поля отражающего элемента. Отражающим элементом в данном случае является намагниченная при записи точка на поверхности диска, соответствующая одному биту хранимой информации. При считывании используется лазерный луч небольшой интенсивности, не приводящий к нагреву считываемого участка, таким образом при считывании хранимая информация не разрушается.
Рекомендуем скачать другие рефераты по теме: оформление доклада титульный лист, рефераты.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата