Оптимизация профиля отражения частотных фильтров излучения с использованием модулированных сверхрешеток
Категория реферата: Рефераты по физике
Теги реферата: гражданское реферат, конспект урока на тему
Добавил(а) на сайт: Argenteja.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
[pic]
График 33. Зависимости отражения волны для структуры из тридцати шести слоев при угле падения 450 от частоты.
Теперь бахрома в области пропускания стала чаще. Посмотрим, что дальше будет.
[pic]
График 34. Зависимости отражения волны для структуры из пятидесяти шести слоев при угле падения 00 от частоты.
[pic]
График 35. Зависимости отражения волны для структуры из пятидесяти шести слоев при угле падения 450 от частоты.
Так выглядит частотный профиль отражения бинарной квазипериодической решетки при пятидесяти шести слоях в структуре. Дальнейшее увеличение числа слоев практически не изменяет пики отражения. Это видно, например, из графиков № 36 и № 37.
[pic]
График 36. Зависимости отражения волны для структуры из шестидесяти четырех слоев при угле падения 00 от частоты.
[pic]
График 37. Зависимости отражения волны для структуры из шестидесяти четырех слоев при угле падения 450 от частоты.
Вполне очевидно, что пики существенно не изменились, увеличилась
частота бахромы в зоне пропускания. Профиль отражения становится вполне
устойчивым примерно с сорока – пятидесяти слоев (в зависимости от того
насколько требуется подавить или участить бахрому в области пропускания.).
Видимо, это предел «хорошести» для отражения решетки при данной модуляции.
Наверняка для улучшения этого профиля требуется либо смягчение ограничений, накладываемых на условие (возможность применения других материалов, например), либо некая принципиально другая идея для создания решетки.
Интересно, что, начиная даже с малого числа слоев (около двадцати), на
интересующей нас частоте наблюдается расщепление пика справа при увеличении
угла падения. И, начиная с тридцати слоев, вторичная мода справа при угле
падения излучения 450 становится неизменной.
5. Заключение.
Предложенные методы модуляции бинарных квазипериодических анизотропных структур дают метод практического решения некоторых задач, связанных с передачей излучения и его управлением.
В первую очередь хотелось бы отметить некоторые общие закономерности.
Что характерно для любой оптимизирующей структуры: луч, направленный со
стороны более тонких слоев, дает лучший профиль отражения при малых углах
падения, но который сильнее расплывается и дробится на множество пиков при
увеличении этого угла. Луч же, направленный со стороны более широких слоев
(нисходящие ступени и псевдогауссова модуляция), хотя и дает несколько
худший профиль (что можно пытаться исправить другими методами), зато
является более устойчивым к изменению угла падения. Также важно отметить
четкую зависимость расположения пиков отражения от базовой толщины слоев
(от оптического пути вообще). Так, если будет замечена устойчивая, хорошая
область отражения в диапазоне, не соответствующем условию задачи, варьируя
оптические пути (технологически – толщины слоев), можно сместить его до
уровня нужных частот.
Теперь непосредственно по различным модуляциям. В зависимости от
поставленной задачи, можно дать несколько рекомендаций. Так, если требуется
хорошее отражение при малых углах падения, можно использовать ступенчатую
модуляцию (графики № 11, № 14 и № 17), но, если требуется узкая
направленность (полное отсутствие отражения при других углах), лучше
использовать стековую модуляцию (графики №№ 20, 21 и №№ 23, 24). С другой
стороны, если требуется совсем узкая частотная полоса, лучше использовать
большие углы падения луча (близкие к 450) при той же стековой модуляции
(графики № 21 и № 24). Сознательно стараемся избегать гауссовой модуляции
всего лишь ввиду более трудоемкого производства таких элементов в
технологическом смысле, так как требуется большая точность в толщине слоев
и большее число самих слоев, напыляемых (или выращиваемых) на подложке.
Однако именно при этой модуляции достигнуты наиболее значимые
результаты. Так, например, видится готовое узкополосное зеркало, отражающее
при любых углах падения (от 00 до 450) (графики №№ 30, 31, №№ 32, 33, №№
34, 35 и №№ 36, 37). Опять таки, варьируя общую толщину решетки, можно
смещать отражаемую частоту вправо или влево, в зависимости от поставленных
целей (источника излучения, например). Даже структуры, в которых зоны
отражения зависят от угла падения излучения, могут найти себе применение
(первые пики в решетках с гауссовой модуляцией). Например, пусть имеется
источник белого или почти белого света (в том смысле, что присутствует
довольно широкий спектр излучения), а нужна некоторая более узкая частотная
полоса. Тогда достаточно модулированную по гауссу решетку просто
расположить под необходимым углом к падающему лучу. Волны с требуемой
частотой отразятся, а остальные пропустятся. Конечно, лучше выглядит первый
пик при стековой модуляции (график № 20), и, чтобы вырезать нужную частоту, можно взять такую решетку и расположить ее перпендикулярно лучу. Но тогда
для другой полосы частот требуется другая структура (другой толщины). Таким
образом, под рукой придется иметь целый набор стековых решеток. В то время
как гауссову структуру достаточно повернуть на нужный угол.
Та же идея может быть применена, если есть разнонаправленное излучение
(от нескольких источников или сильно расходящиеся лучи) и необходимо
выделить некоторое направление. Тогда можно, расположив структуру на
поглощающей подложке, расположить ее под нужным углом. Часть излучения
отразится в нужном направлении, а остальная часть – пропустится или
поглотится.
В качестве дальнейшего направления исследований видится применение, возможно, смешанных модуляций, с перспективой получения более широких зон отражения, либо узких пиков, но с абсолютным пропусканием на остальных частотах (сглаживание бахромы и получение более вертикальных стенок профиля).
Предложенные методы модуляции могут найти применение в квантовой электронике и других разделах физики и техники, где существенную роль играет узкая частотная полоса излучения, а так же могут служить для создания селективных управляемых фильтров, зеркал и затворов.
6. Приложение.
При проведении вычислений настоящей работы и построении графиков
использовался прикладной пакет «Mathematica 3.0». Этот пакет является
достаточно мощным средством для решения многих задач линейной алгебры.
Основными его достоинствами являются простота в использовании, удобный, интуитивно понятный интерфейс, большой спектр возможностей и богатейший
хелп. Как особенность хочется подчеркнуть отсутствия у пакета компилятора.
Ниже приведен листинг программы, выполняющей все расчеты и построения, относящиеся к данному проекту.
Листинг программы к данному проекту.
В этой части программы подключается модуль пакета, работающий с матрицами, и задаются начальные диады и скорость света.
Рекомендуем скачать другие рефераты по теме: диплом формирование, научные статьи.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата