Стереометрия. Тема Движение
Категория реферата: Рефераты по физике
Теги реферата: культурология шпаргалки, воспитание реферат
Добавил(а) на сайт: Kazjuchic.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Из этих утверждений также вытекает, что композиция параллельных переносов есть параллельный перенос.
Параллельный перенос фигуры задается указанием одной пары соответствующих точек. Например, если указано, в какую точку A’ переходит
данная точка A, то этот перенос задан вектором AA’, и это означает, что все точки
смещаются на один и тот же вектор, т.е. XX’ = AA’ для всех точек Х.
5. Центральная симметрия.
Определение 1. Точки A и A’ называются симметричными относительно точки О, если точки A, A’, O лежат на одной прямой и OX = OX’. Точка О считается симметричной сама себе (относительно О).
Две фигуры называются симметричными относительно точки О, если для каждой точки одной фигуры есть симметричная ей относительно точки О точка в другой фигуре и обратно.
Как частный случай, фигура может быть симметрична сама себе относительно некоей точки О. Тогда эта точка О называется центром симметрии фигуры, а фигура - центрально-симметричной.
Определение 2. Центральной симметрией фигуры относительно О называется такое отображение этой фигуры, которое сопоставляет каждой ее точке точку, симметричную относительно О.
Основное свойство : Центральная симметрия сохраняет расстояние, а направление изменяет на противоположное. Иначе говоря, любым двум точкам X и Y фигуры F соответствуют такие точки X’ и Y’, что
X’Y’ = -XY.
Доказательство. Пусть при центральной симметрии с центром в точке О точки X и Y отобразились на X’ и Y’. Тогда, как ясно из определения центральной симметрии (рис.4),
OX’ = -OX, OY’ = -OY.
Вместе с тем
XY = OY - OX, X’Y’ = OY’ - OX’.
Поэтому имеем:
X’Y’ = -OY + OX = -XY.
Отсюда выходит, что центральная симметрия является движением, изменяющим направление на противоположное и наоборот, движение, изменяющее направление на противоположное, есть центральная симметрия.
Центральная симметрия фигуры задается указанием одной пары существующих точек: если точка А отображается на А’, то центр симметрии - это середина отрезка AA’.
6. Зеркальная симметрия (отражение в плоскости).
Определение 1. Точки A и A’ называются симметричными относительно плоскости (, если отрезок AA’ перпендикулярен этой плоскости и делится ею пополам. Любая точка плоскости ( считается симметричной самой себе относительно этой плоскости (рис.5).
Две фигуры F и F’ называются симметричными относительно данной плоскости, если они состоят из точек, попарно симметричных относительно этой плоскости, т.е. если для каждой точки одной фигуры есть симметричная ей точка в другой фигуре.
Если преобразование симметрии относительно плоскости переводит фигуру в себя, то фигура называется симметричной относительно плоскости (, а плоскость ( - плоскостью симметрии.
Определение 2. Отображение фигуры, при котором каждой ее точке соответствует точка, симметричная ей относительно данной плоскости, называется отражением фигуры в этой плоскости (или зеркальной симметрией).
Теорема 1. Отражение в плоскости сохраняет расстояния и, стало быть, является движением.
См. Доказательство 1.
Теорема 2. Движение, при котором все точки некоторой плоскости неподвижны, является отражением в этой плоскости или тождественным отображением.
Рекомендуем скачать другие рефераты по теме: оформление доклада, курсовые.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата