Имитационное биомеханическое моделирование как метод изучения двигательных действий человека
Категория реферата: Рефераты по физкультуре и спорту
Теги реферата: реферат по обж, открытия реферат
Добавил(а) на сайт: Tatarov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
а) исследовали кинематику моделируемой локомоции (бег на коньках по прямой) с помощью видеорегистрирующей методики. Наличие исходных кинематических данных с дискретностью 40 мс (частота видеорежима PAL) дает возможность с приемлемой точностью определить кинематические параметры модели;
б) чтобы краевые условия не влияли на скорость и ускорение изучаемого движения, справа и слева от изучаемого цикла задавали дополнительно не менее трех фаз [41].
Трехмерная имитационная модель локомоций человека (на примере бега на коньках). Пространственная имитационная модель локомоций человека была реализована для бега на коньках по прямой. Уравнения модели, описывающие трехмерное движение звеньев тела, даны в [10]. Построение имитационной модели проходило в несколько этапов:
1. На первом этапе определили масс-инерционные характеристики сегментов тела конькобежца : массы, моменты инерции звеньев, положения центров масс и биомеханические длины звеньев [7, 9].
2. На втором этапе исследовали особенности движения конькобежца в двухопорной фазе. Для этого оценили величину поперечного смещения звеньев тела конькобежца, рассчитали центробежную силу, действующую на толчковый конек, и тем самым ввели ограничения на "разгрузку толчковой ноги" в двухопорной фазе. При расчете загрузки опорной ноги и моментов в суставах применяли уравнения из работы [5].
3. На третьем этапе определили аэродинамическое сопротивление сегментов тела конькобежца. Включение в модель аэродинамических сил необходимо, так как аэродинамическое сопротивление - основная тормозящая сила, действующая на конькобежцев. Коэффициенты аэродинамического сопротивления Сх для разных форм посадки конькобежцев в зависимости от скорости и вида бега: с руками или без рук, по прямой или по повороту - составили от 0,75 до 1,2 [8, 38]. Суммарная величина сопротивления воздуха для всего тела конькобежца (сила, приложенная к ОЦМ) в зависимости от формы посадки при скорости бега 15 м/c составляет 45-61 Н. Наибольшее воздействие силы аэродинамического сопротивления приходится на туловище - около 30% от суммарной силы. Аэродинамическое сопротивление голени и бедра ног не превышает 10 Н.
4. На четвертом этапе рассчитали кинематические характеристики имитационной модели бега на коньках. К ним относятся: длина шага, длительность фаз: свободного проката, одноопорного отталкивания и двухопорного отталкивания; средняя скорость по фазам, ширина "елочки", формы посадки конькобежцев.
Выше было сказано, что способ задания базисных точек кинетограммы существенно влияет на скорости и ускорения изучаемого движения и, значит, на результаты решения ОЗД. При моделировании бега на коньках для более точного задания линейных и угловых характеристик локомоций использовали данные видеосъемки конькобежцев. Перед тем как создать кинетограмму бега на ЭВМ, сначала методом биомеханической видеосьемки и компьютерных программ определяли углы, угловые скорости в суставах в трех положениях: в начале фазы "свободного проката" (рис. 1А); в начале одноопорного отталкивания (рис. 1Б); в начале двухопорного отталкивания (рис. 1В); в завершении двухопорного отталкивания (рис. 1Б).
Зная расстояние между масштабными метками на дорожке, определяли путь и среднюю скорость тазобедренного сустава (полюса модели) между базисными точками в продольном направлении.
Аналогичную последовательность в обработке кадров применяли и для видеоряда поперечных движений конькобежцев.
5. На пятом этапе в компьютерную модель включили данные по анатомическому строению мышц нижней конечности конькобежцев - точки крепления мышцы к костям, физиологический поперечник, длины мышечной и сухожильной частей, состав волокон; угол перистости [9].
6. На шестом этапе решали обратную задачу - определения динамики для 16-звенной пространственной модели тела человека.
Выходные параметры модели. В результате компьютерного моделирования бега на коньках определяли следующие биомеханические параметры:
а) управляющие (суставные) моменты;
б) механическую работу и мощность , развиваемую в суставах;
в) скорости 7 мышц нижней конечности и
г) силы тяги 7 мышц ноги.
Применение имитационного моделирования для определения биомеханических характеристик бега на коньках с рекордной скоростью. Продемонстрируем возможности метода имитационного моделирования с целью определения модельных динамических характеристик бега на коньках с рекордной скоростью. Для этого определили динамические и энергетические параметры, такие, как: а) механическая работа и б) мощность при различных скоростях бега, включая рекордную скорость 15 м/с.
Среднюю скорость бега в фазах, углы в суставах, фазовый состав движения определили на основе результатов биомеханического исследования темпо-ритмовых характеристик бега на прямой участников забегов на дистанциях 1500 и 5000 м зимних Олимпийских игр в Нагано и Солт-Лейк-Сити.
Механическая работа в зависимости от скорости бега. Моменты, направленные на разгибание в суставах (моменты относительно поперечных осей), придают ускоренное движение ОЦМ тела (рис. 2). Расчет механической работы в тазобедренном, коленном и голеностопном суставах толчковой ноги при разной скорости бега проводили в проекции на ось X инерциального базиса. Результаты расчетов представлены на рис. 3.
С увеличением скорости бега механическая работа в суставах не имеет однонаправленной тенденции к возрастанию. Так, работа в тазобедренном суставе почти не меняется - 74-69 Дж, в коленном - возрастает с 52 (V=11 м/с) до 92 Дж (V=15 м/с); а в голеностопном - увеличивается в 2,8 раза - с 55 (V=11 м/с) до 159 Дж (V=15 м/с).
Механическая мощность в суставах толчковой ноги. Помимо механической работы рассмотрим еще один показатель силовой активности мышц - мощность (также в проекции на ось X инерциального базиса). Мощность по своим составляющим: угловой скорости и моменту - в большей степени соответствует физиологическим особенностям функционирования мышцы, а именно зависимости "сила-скорость" . Увеличение скорости бега с 11 до 15 м/с меняет экстремум мощности в тазобедренном суставе на 24%. В коленном и голеностопном суставах с увеличением скорости бега максимальная мощность возрастет в два раза (рис. 4).
Заключение. Применили метод имитационного моделирования к задачам, связанным с изучением двигательной деятельности человека в экстремальных условиях. На примере бега на коньках с рекордной скоростью 15 м/с были определены "ведущие" суставы, в которых развивается максимальная мощность и совершается наибольшая механическая работа. Такими суставами являются коленный и голеностопный. С ростом скорости бега с 11 до 15 м/с механическая работа увеличивается в коленном суставе почти в два раза - с 52 до 92 Дж, в голеностопном - в три раза - с 55 до 159 Дж (см. рис. 3). Механическая суставная мощность - косвенный показатель напряженности мышечной работы - свидетельствует о том, что голеностопный сустав за счет шарнира между лезвием конька и ботинком становится ведущим суставом, обеспечивающим рост скорости бега до 15 м/с (см. рис. 4).
Рис. 4. Мощности разгибания в суставах толчковой ноги при разной скорости бега
Рекомендуем скачать другие рефераты по теме: реферат на тему экономика, отчет о прохождении практики.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата