Государственные геодезические сети
Категория реферата: Рефераты по географии
Теги реферата: реферат машины, рефераты бесплатно скачать
Добавил(а) на сайт: Уттеркло.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
. (5)
Если считать, что мы движемся от линии СА к линии АВ, то дирекционный угол последующей стороны (в данном случае АВ ) будет равен дирекционному углу предыдущей стороны ( в данном случае СА ), измененному на 180, плюс левый или минус правый горизонтальный угол между этими сторонами по отношению к принятому направлению движения.
Обратная геодезическая задача.
Обратная геодезическая задача заключается в том, что по координатам двух точек находят длину и дирекционный угол, соединяющий их линии. Пусть даны координаты точки А и точки В. Прежде всего найдём приращение координат ; .
Затем по теореме Пифагора вычислим длину стороны :
После этого получим величину румба направления АВ:
контроль:
Возможен другой путь решения задачи, когда, вычислив приращения координат, прежде всего находят румб и дирекционный угол , а уже затем длину стороны :
В основу наиболее распространенных способов положен единый принцип, в соответствии с которым на местности строят те или иные геометрические фигуры, позволяющие установить геометрическую связь между точками развиваемых геодезических сетей. Для реализации такой связи в упомянутых фигурах измеряют с необходимой точностью углы и стороны. В зависимости от типа и размеров фигур, используемых для построения сетей, а также от того, какие элементы и с какой точностью в этих фигурах измеряются, различают несколько способов определения координат точек местности.
Триангуляция - один из методов создания плановых геодезических сетей на основе построения и решения треугольников по измеренным углам. Триангуляция представляет собой систему примыкающих или перекрывающих друг друга треугольников, которые могут образовывать триангуляционный ряд или триангуляционную сеть. Сторону одного из треугольников измеряют непосредственно или получают косвенным путем, построив так называемую базисную сеть, состоящую, как правило, из ромбов с разными по длине диагоналями. Остальные стороны триангуляционного ряда или сети находят путём последовательного решения треугольников по углам и стороне, используя терему синусов.
Известно, что для решения треугольника достаточно измерить в нём, кроме стороны, два угла. Однако при построении триангуляции в каждом треугольнике измеряют все три угла. Это позволяет проконтролировать результаты угловых измерений и, кроме того, в итоге специальных уравнительных вычислений несколько повысить точность конечного результата. С этой же целью измеряют длину не одной стороны ряда или сети, а двух и более. В случае необходимости в схеме триангуляции предусматривают перекрытие треугольников, что также улучшает качество построения.
После того, как будут вычислены длины стороны треугольников, находят координаты их вершин. Для этого в качестве исходных данных необходимо иметь координаты одной из точек и дирекционный угол ( азимут ) одной из сторон сети. Затем по этим сторонам последовательно решают прямые геодезические задачи и таким образом определяют плановое положение вершин сети.
Трилатерация - как и триангуляция, представляет собой построение, состоящее из треугольников. Однако в этих треугольниках измеряют не углы, а длины сторон. Триангуляцию и трилатерацию применяют в тех случаях, когда существует видимость на большие расстояния.
Полигонометрия - метод, в основу которого положено поыберем несколько точек, взаимное положение которых определим с самой высокой точностью.борот, должны создаваться в несколько этстроение на местности сомкнутых или разомкнутых многоугольников ( ходов ), в которых измеряют горизонтальные углы между соседними сторонами и длины сторон . Метод полигонометрии применяют обычно в закрытой местности, где трудно обеспечить видимость на большие расстояния.
Геодезические засечки применяют, как правило, для определения координат отдельных точек. В качестве исходных данных используют пункты существующих геодезических сетей, а в качестве измеряемых величин - горизонтальные углы и расстояния.
Плановое положение точки определяется двумя её координатами X, Y, поэтому для реализации любой засечки необходимо измерить, как минимум, две независимые величины ( углы, расстояния ), каким-либо образом связывающие определяемую точку с исходными пунктами.
Наибольшее распространение в практике создания геодезической плановой основы получили прямая и обратная ( боковая )угловые засечки, а также задача Потенота ( определение положения четвёртой точки по трём данным ).
Сущность прямой угловой засечки состоит в том, что искомую точку находят как пересечение двух направлений и с твёрдых ( исходных ) пунктов и . Направления на определяемую точку задают, измерив горизонтальные углы и с исходной стороной .
Сначала решают , в результате чего находят длины сторон.
Затем вычисляют дирекционные углы этих сторон:
Решив прямые геодезические задачи по сторонам и , получают координаты точки :
Для того чтобы проконтролировать результат решения прямой угловой засечки, точку «засекают» с какого-нибудь третьего исходного пункта ( пункта С ) и решают задачу еще раз с новой комбинацией направлений.
При выборе исходных пунктов для выполнения засечки руководствуются соображением, что при прочих равных условиях задача решается тем точнее, чем ближе угол к 90. Не допускается выполнять прямую угловую засечку, если этот угол меньше 30 и больше 150.
В производственных условиях может оказаться, что один из опорных пунктов, например, недоступен для измерения на нём горизонтального угла. В таком случае прямое направление «засекают» не из исходной точки , а из определяемого пункта «на себя», как бы в обратную сторону, поэтому такую схему определения координат точки называют обратной угловой засечкой. Последовательность и сущность решения обратной угловой засечки совпадает с последовательностью и сущностью решения прямой угловой засечки.
Координаты отдельной точки можно получить по схеме, называемой «задачей Потенота», не выполняя никаких измерений на исходных пунктах. Определение координат точки по трём исходным пунктам особенно эффективно, когда эти пункты недоступны для измерения горизонтальных углов. Схема реализуется путём измерения в определяемой точке углов и , образованных направлениями на опорные точки .
Задача может быть решена различными способами: аналитическим, графическим, смешанным. Однако геометрический смысл любого решения состоит в том, что исходная точка получается в пересечении двух окружностей и , из которых первая задана хордой и углом , вторая - хордой и углом . Задача имеет неопределённое решение, если обе окружности полностью совпадут. Это произойдёт в том случае, когда искомая точка находится на «опасной окружности» , проходящей через три исходных пункта.
Рекомендуем скачать другие рефераты по теме: доклад по биологии, шпоры.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата