Разрывные нарушения в фундаменте и осадочном чехле территории Воронежского кристаллического массива (ВКМ)
Категория реферата: Рефераты по географии
Теги реферата: решебник по физике, реферат значение
Добавил(а) на сайт: Peskov.
1 2 3 | Следующая страница реферата
Разрывные нарушения в фундаменте и осадочном чехле территории Воронежского кристаллического массива (ВКМ)
А.И.Трегуб, Воронежский государственный университет
Среди разломов ВКМ выделяются разновозрастные группы, связанные с его геологической историей. Блоковые движения фундамента в надразломном пространстве осадочного чехла формируют области динамического влияния разломов. При пересечении с земной поверхностью эти области образуют зоны динамического влияния, которые в геоморфологическом ландшафте отражаются аномалиями повышенной плотности линеаментов. Инфраструктура аномалий определяется кинематикой разломов фундамента, а также структурным фоном, обусловленным диагенетической трещиноватостью пород осадочного чехла.
Тектоническая структура осадочного чехла древних платформ определяется блоковыми движениями кристаллического фундамента. Границы структур чехла, таким образом, связаны с разломами, разделяющими блоки фундамента. В осадочном чехле сочленение структур образовано областями динамического влияния разломов. Принципиальное строение этих областей может быть рассмотрено на основе результатов моделирования процессов разломообразования [1,2,3].
В зависимости от интенсивности и длительности движений по разломам в развитии областей их динамического влияния выделяются три главные стадии [4]. Первая (начальная) стадия определяется как пликативная. Она выражается образованием в надразломном пространстве осадочного чехла пликативных структур, связанных с развитием преимущественно пластических деформаций. Вторая (промежуточная) стадия - дизъюнктивно-пликативная. Она характеризуется постепенным сокращением ширины области динамического влияния, замедлением роста пликативных структур, переходом их в реликтовое состояние. Пластические деформации замещаются дизъюнктивными, что выражается массовым образованием мелких разрывов, развивающихся по ранговому принципу [5]. Третья (финальная) стадия развития областей динамического влияния - дизъюнктивная. В течение этой стадии продолжается сужение области динамического влияния. Формирование разрывных нарушений направлено на образование единого (магистрального) сместителя. При этом большая часть разрывов, образовавшихся в пликативно-дизъюнктивную стадию теряет свою активность. Внутренняя структура (инфраструктура) областей динамического влияния на различных стадиях их развития определяется динамическими условиями, возникающими при движениях по разломам фундамента. В условиях растяжения, при движениях сбросового типа [3] пликативная стадия развития области динамического влияния отмечена образованием в осадочном чехле флексур, ширина которых тем больше, чем положе сместитель сброса. В дизъюнктивно-пликативную стадию по периферии области в поднятом и опущенном крыльях образуются две полосы разрывных нарушений, представленных трещинами отрыва, преобладающая ориентировка которых совпадает с простиранием области динамического влияния. Полоса в опущенном крыле отличается большей шириной и активностью образующих ее нарушений. За счет ее дальнейшего развития на третьей стадии формируется магистральный сброс. Развитие разрывов в поднятом крыле при этом затухает и полностью прекращается.
В условиях сжатия, при взбросовом характере движений [2] по разломам фундамента, на пликативной стадии возникает валообразное поднятие, по периферии которого на второй стадии развития области образуются две полосы разрывных нарушений, представленных трещинами, ориентированными параллельно простиранию области. Ширина полосы в поднятом крыле больше чем в опущенном. В пределах этой полосы на дизъюнктивной стадии формируется магистральный разлом взбросового типа. Важно отметить, что при формировании как сбросовых, так и взбросовых структур образование и рост разрывных нарушений происходит от кровли к подошве деформируемого слоя.
При развитии сдвигов фундамента область их динамического влияния [1] в пликативную стадию представлена чередованием по простиранию области косо ориентированных локальных впадин и поднятий. Разрывообразование пликативно-дизъюнктивной стадии охватывает всю область надразломного пространства и представлено S-образно расположенными в плане трещинами отрыва, ограничивающими дуплексы области динамического влияния. За счет развития дуплексов в дизъюнктивную стадию образуется магистральный сдвиг.
При пересечении области динамического влияния разлома с земной поверхностью образуется зона динамического влияния разлома (зона разлома) [6]. Инфраструктура зоны разлома включает два важнейших элемента - осевую линию и деструктивные поля. Осевая линия в зависимости от стадии развития области динамического влияния может быть выражена единым разрывом либо серией кулис, а также узкой полосой интенсивной трещиноватости или параллельными сериями таких полос, прерывающихся по простиранию. Она может быть выделена условно, как линия проходящая через максимумы плотности деформаций. Деструктивные поля - это участки с аномальной в пределах зоны разлома плотностью разрывных нарушений. Параметры инфраструктуры зон разломов определяются стадией развития, кинематическим типом разлома и длительностью его формирования. Для пликативной стадии развития характерен равномерно-дисперсный тип инфраструктуры, при котором осевая линия может быть выделена условно, а деструктивные поля обладают малой контрастностью. Для дизъюнктивно-пликативной стадии - дискретно-дисперсный тип (деструктивные поля резко обособлены, а осевая линия выражена прерывистыми полосами повышенной трещиноватости). Линейно-концентрированный тип инфраструктуры (осевая линия совпадает с единым разломом или серией кулис) характеризует дизъюнктивную стадию развития области динамического влияния.
Отражаясь в геоморфологическом ландшафте, зоны разломов проявляются разноранговыми линеаментами, устанавливающимися при структурном дешифрировании аэро- и космофотоматериалов, а также топографических и геоморфологических карт.
В реальных условиях формирование областей динамического влияния разломов фундамента в осадочном чехле протекает более сложно. С одной стороны это связано с тем, что образование осадочного чехла происходит циклично. Разнопорядковые седиментационные циклы отражают сложную смену полей тектонических напряжений, вследствие чего кинематика одних и тех же разломов фундамента может существенно изменяться во времени. При изменении характера движений по разломам фундамента образование областей их динамического влияния в осадочном чехле как бы начинается заново. С другой стороны - реликтовые структурные ансамбли предыдущих фаз, обусловливая структурную анизотропию деформируемого надразломного пространства, существенно усложняют формирование новых структурных форм. Кроме того, деформируемые осадочные образования являются изначально структурированы, за счет развития в них разноранговой диагенетической трещиноватости.
Для территории ВКМ разломы фундамента, выделенные в основном по геофизическим признакам различными авторами (рис.1) далеко не всегда совпадают по своему пространственному положению, кинематической интерпретации, рангу и времени образования. В плановой ориентировке разломов фундамента выделяется несколько систем. Для центральной части КМА Н.Д.Кононовым [7] выделены следующие системы взаимно перпендикулярных разломов: 305-35°, 330-60°, 290-20° и 360-90°. Наиболее древней признается система 305-35°, заложение которой относится к архею. Разломы с направлением 305° считаются продольными к складчатым структурам михайловского и курского времени. По этим разломам на протяжении длительного времени происходили излияния эффузивов и внедрение интрузий сергеевского, салтыковского и осколецкого комплексов. Заложение системы 330-60° отнесено ко второй половине раннего протерозоя. К ней приурочены интрузии стойленско-николаевского компекса. Граниты атаманского комплекса связываются с разломами меридионального и широтного направлений. Наиболее молодыми считаются разломы с простиранием 290° и 20°.
В.Н.Котко [8] выделял три основные системы разломов: субмеридиональную, северо-западную и северо-восточную. Разломы субмеридиональной системы считаются архейскими. Нижнепротерозойскими признаны разломы северо-западной и северо-восточной систем.
Г.И.Раскатов с соавторами [9] для северо-западной части Воронежской антеклизы указывали на наличие четырех систем: 340-350°, 60-70°, 30-50°, 280-300°. Все системы заложились в раннем архее. Те же авторы для восточной части ВКМ выделяют следующие системы: две северо-западной ориентировки (15-35° и 50-75°), две северо-восточной (330-350° и 290-310°), субмеридиональную и субширотную [10].
На основе современных геодинамических представлений [11] оценка времени заложения разломов фундамента ВКМ, по-видимому, должна быть проведена прежде всего с учетом истории формирования кристаллического основания. В этой связи разломы можно разделить на несколько возрастных генераций, которые распространены в пределах разновозрастных геоблоков [11]. Раннеархейская генерация приурочена к наиболее древним областям консолидации (Брянский, Волгоградский геоблоки, срединные массивы в пределах Курского геоблока). Позднеархейская генерация связана с развитием рифтогенных структур Курского геоблока. На территории самого молодого Воронежского геоблока, а также в пределах Ливенско-Богучарской шовной зоны и раннепротерозойских структур Курского геоблока распространена раннепротерозойская гене
рация разломов. Позднепротерозойская генерация связана с авлакогенным этапом развития территории, с этапом обособления ВКМ.
Раннеархейская генерация разломов в пределах Брянского геоблока представлена следующими основными системами (по убывающей значимости): СВ 55-60°, СВ 40°, СВ 25° и СВ 5°. Для Волгоградского геоблока наиболее типичны системы СВ 40°, С 0°. Структурная анизотропия этих геоблоков, установленная по анализу индикатрис анизотропии [12], характеризуется ориентировкой главной оси СЗ 310-330° и указывает на вероятное положение оси сжатия при образовании разломов. В этом варианте разломы систем СВ 55-60°, СВ 40° и СВ 25° должны были развиваться в режиме взбросов и надвигов, а субмеридиональных систем - в режиме левых сдвигов и взбросо-сдвигов.
Позднеархейская генерация в пределах Курского геоблока представлена следующими основными системами: СЗ 355°- С 0°, СЗ 315-325°. При ориентировке главной оси анизотропии познеархейских структур СВ 50° система СЗ 315-325° в начальных стадиях рифтогенеза (в условиях растяжения) развивалась в раздвиговом режиме, а на заключительных этапах (в условиях сжатия) - в надвиговом и взбросовом. Разломы субмеридионального направления - как левые сдвиги (при растяжении) и как правые сдвиги (при сжатии).
Раннепротерозойская генерация разломов в пределах Курского геоблока выражена одной главной системой - СЗ 335-345°, которая при ориентировке оси анизотропии раннепротерозойских структур СВ 65° в начальных фазах рифтогенеза развивалась в раздвиговом, а в заключительных - во взбросовом режимах. Основными раннепротерозойскими системами разломов Воронежского геоблока и Ливенско-Богучарской шовной зоны являются: СЗ 335-345°, СЗ 355°-СВ 10°, СВ 35-40°. Главная ось анизотропии раннепротерозойских структур этой территории имеет субширотную ориентировку, при которой, развиваясь в условиях коллизионного сжатия, разломы системы СЗ 335-345° являлись левыми сдвигами, субмеридионального направления - надвигами, а северо-восточной системы - правыми взбросо-сдвигами.
Позднепротерозойская генерация разломов, имея ярко выраженный наложенный характер, наиболее отчетливо проявляется в структурах обрамления ВКМ [13]. При этом для Днепровско-Донецкого авлакогена главными системами являются: СЗ 280-300°, СЗ 330°; для Волыно-Оршанской впадины: СВ
45-50°, СЗ 335°, СВ 20°; для Пачелмского авлакогена: СЗ 280-305°, СЗ 320-330°; для Прикаспийской впадины: СВ 10-20°, СВ 40-55°. Главные системы разломов структур ограничения ВКМ, развиваясь в условиях растяжения, представлены раздвигами и сбросами. С разломами сбросо-сдвигового типа связываются уступы в кристаллическом фундаменте, выявленные методами электроразведки [14] и подтвержденные сейсмическими данными [15]. Их высота оценивается в 500-600 м (в районе г. Кирсанова) и 800-1000 м (в районе Пересыпкино). Уступы часто сопровождаются полосами четких положительных гравитационных аномалий, что связывается с интрузиями основного состава, внедрившимися по разломам.
В целом для территории ВКМ разломы фундамента представлены системами различных направлений, главными из которых являются: субмеридиональная (СЗ 355°-СВ 10°), субширотная (СВ 80°- СЗ 300°), две северо-западные (СЗ 315-330° и СЗ 335-345°), две северо-восточные (СВ 20-30° и СВ 40-60°). Сформировавшись на доплитной стадии развития платформы в условиях достаточно интенсивных тектонических движений, эти разломы прошли все стадии развития и представлены магистральными швами, разделяющими блоки различной величины. Более поздняя геологическая история территории ВКМ отличается существенно меньшей интенсивностью тектонических движений, вследствие чего новые разломы в фундаменте вряд ли могли формироваться, а релаксация тектонических напряжений проходила путем активизации уже существующих разрывных нарушений различных систем. Такая активизация возникала неоднократно, обеспечивая высокую степень унаследованности развития тектонической структуры в продолжение всего фанерозоя [16].
Области динамического влияния разломов фундамента в осадочном чехле территории ВКМ, формируясь в условиях слабых тектонических движений далеко не всегда достигали финальной стадии развития и, таким образом, не превращались в собственно разломы. Исключение составляли некоторые этапы формирования осадочного чехла, отмеченные высокой тектонической активностью [17], когда в чехле возникали отдельные разломы, по которым происходили излияния базальтов. К таким этапам относятся начало ряжского времени эмского века, воробьевское время живетского века и начало петинского времени франского века [18]. Кроме того, повышенной активностью обладали разломы фундамента, ограничивающие Воронежский кристаллический массив, вследствие чего области их динамического влияния в осадочном чехле обычно отмечены дизъюнктивно-пликативной и дизъюнктивной стадиями развития.
На основе дешифрирования космофотоматериалов и анализа имеющихся схем дешифрирования среднего и мелкого масштаба для территории ВКМ выполнена статистическая обработка первичных схем дешифрирования. Линеаменты первичных схем дешифрирования были разделены в десятиградусном интервале простираний на восемнадцать классов. Для линеаментов каждого класса с помощью скользящего окна квадратной формы площадью 625 кв. км составлены карты плотности линеаментов (рис.2). Наибольшим распространением пользуются линеаменты десяти классов (10-20°, 20-30°, 40-50°, 60-70°, 80-90°, 270-280°, 280-290°, 320-330°, 340-350°,350-360°), образующих соответствующие системы. Линеаменты остальных восьми интервалов простираний встречаются редко (в количестве недостаточном для проведения статистической обработки). Плотность линеаментов характеризуется закономерными изменениями по площади. Для всех систем устанавливаются узкие линейные аномалии, ширина которых на уровне плотностей более 0,3 км/км2. в среднем составляет 18 км, а длина 200 км.
Отдельные аномалии часто образуют сдвоенные параллельные ассоциации, со средними расстоянием между осями 40 км. По простиранию аномалии группируются в цепочки, прослеживающиеся на протяжении 400-500 км.
Поскольку инфраструктура аномалий плотности линеаментов является отражением инфраструктуры зон разломов, то сдвоенный характер аномалий может быть сопоставлен по кинематическому типу с зонами сбросов и взбросов. Не сдвоенные аномалии могут фиксировать сдвиговые зоны. Для территории ВКМ сдвоенные аномалии преобладают во всех системах. Учитывая, что линеаменты напрямую связаны с геоморфологическим ландшафтом, можно утверждать, что они отражают прежде всего неотектонические структуры. Простирание осей аномалий не всегда совпадает с простиранием линеаментов их образующих. Для системы 10-20° (15°) их преобладающая ориентировка находится в интервале значений 0-5°, а максимальное отклонение от среднего простирания линеаментов составляет +20° (рис.2,а). На площади ВКМ аномалии распространены сравнительно равномерно со средним шагом 150 км.
Система линеаментов с простиранием 20-30° (25°) характеризуется существенно большим развитием (рис.2,б). Ширина аномалий их плотности на уровне более 0,3 км/км2 в среднем достигает 35 км. Аномалии образуют двойные и тройные системы с расстояниями между осями 60 км. Количество аномалий и их контрастность заметно нарастают в северо-западном направлении. Преобладающая ориентировка осей аномалий находится в интервале СВ 20°-СВ 40°, а максимальное отклонение от среднего азимута линеаментов равно -15°.
Рекомендуем скачать другие рефераты по теме: bestreferat ru, пример дипломной работы.
1 2 3 | Следующая страница реферата