О возможности использования термомагнитных параметров для идентификации вулканических пеплов
Категория реферата: Рефераты по геологии
Теги реферата: болезни реферат, диплом анализ
Добавил(а) на сайт: Chekmarjov.
1 2 | Следующая страница реферата
О возможности использования термомагнитных параметров для идентификации вулканических пеплов
Зубов А.Г., Кирьянов В.Ю.
Вулканический пепел - удобный инструмент изучения истории вулканических извержений, поскольку может быть обнаружен на большом расстоянии от источника, сохраняется в захороненном состоянии длительное время, имеет генетически обусловленный минералогический состав. Существенным недостатком подавляющего большинства известных методик исследований пород является их структурная чувствительность. А это препятствует идентификации отложений пеплов единого источника происхождения, но с разной структурой. Чувствительностью к магнито-минеральному составу и отсутствием структурной чувствительности обладает такие термомагнитные параметры как температура Кюри (TC), намагниченность насыщения и поле насыщения. Наиболее чувствительным для нахождения TC является анализ температурной зависимости магнитной восприимчивости или индуктивной намагниченности. Наличие пиков вблизи TC для мономинеральных фракций (эффект Гопкинсона) позволяет при работе со смесями магнитных минералов более уверенно определять на кривой индивидуальные для минералов TC.
Введение
В процессе исследований геологических объектов постоянно расширяется набор применяемых методов. К простым, поверхностным, легкодоступным, в первую очередь визуальным методикам с использованием цвета, текстуры, структуры, стратификации добавляют распространенные инструментальные методы, такие как гранулометрия, оптическая минералогия, изучение морфологии пепловых частиц, химический, микрозондовый, нейтронно-активационный анализы, различные способы определения возраста. Нередко их все же оказывается недостаточно для решения поставленных задач, и новые трудности заставляют продолжать искать другие методики. Методы магнитоминералогии обладают своими достоинствами, позволяющими добавить новые возможности в исследованиях горных пород. Магнитные минералы являются практически непременным атрибутом горных пород, в том числе и вулканических пеплов, и обладают множеством аппаратурно измеряемых характеристик, которые можно привлечь для анализа изучаемых пород.
Вулканический пепел - удобный инструмент изучения извержений, поскольку может быть обнаружен на большом расстоянии от источника, сохраняется в захороненном состоянии длительное время, имеет генетически обусловленный состав и структуру, используемые при геологических корреляциях. В работе [4] для идентификации вулканических пеплов использовались их магнито-гистерезисные свойства. Однако, этот метод, как и многие другие, обладает существенным для геологических корреляций недостатком. Главная трудность заключается в зависимости этих свойств от размеров и формы изучаемых минералов. Иными словами, магнито-гистерезисные параметры являются структурно-чувствительными. Проблема в том, что в процессе воздушной транспортировки тефра подвергается гравитационной и эоловой дифференциации, в результате которой крупность и процентное соотношение минералов, выпавших на земную поверхность, изменяются по мере удаления от центра извержения. То есть структурная чувствительность методов препятствует правильной идентификации объекта при наличии дифференциации.
К структурно-нечувствительным параметрам, то есть независимым ни от размеров, ни от формы, ни от распределения минералов в породе, в магнетизме горных пород [2] относят поле насыщения, намагниченность насыщения и точку Кюри (TC) магнитного минерала. Известно, что основным носителем магнитных свойств изверженных пород являются титаномагнетиты. Поскольку TC для природных титаномагнетитов варьирует в диапазоне 100-578oC, в зависимости от состава титана, это приводит к идее о возможности применения этого параметра для идентификации тефры. Можно привести пример удачного использования TC для решения такой задачи [3]. Авторами по пемзе и шлакам выделен целый спектр TC (240,400,425,460,555oC), встречающихся в различных комбинациях в разных слоях отложений. Для определения TC здесь использовался классический подход - анализ кривой температурной зависимости намагниченности насыщения.
Более чувствительным для нахождения TC является анализ температурной зависимости магнитной восприимчивости (T). Наличие пиков вблизи TC для мономинеральных фракций (эффект Гопкинсона) позволяет при работе со смесями магнитных минералов более уверенно определять на кривой индивидуальные TC. Попытка применения такого метода анализа была осуществлена также в уже упомянутой работе [4] по пеплу вулкана Фуэго (Гватемала). Кривые исходного образца, а так же его легкой и тяжелой фракций оказались идентичными не только по точкам Кюри TC = 300oC, но и вообще по форме. Это хороший пример структурной нечувствительности по отношению к размерам частиц пепла.
Описание методики
рис. 1 |
По техническим причинам вместо магнитной восприимчивости исследовалась индуктивная намагниченность (Ii). В малых полях между ними существует простая связь: Ii = H, где H - устанавливаемое в эксперименте или естественное постоянное магнитное поле, действующее на измеряемый образец. В таком случае, кривые (T) и Ii(T) по форме совершенно идентичны. Регулировки поля H позволяют подбирать пригодную для измерений величину выходного сигнала. Для измерений магнетита достаточным оказалось поле H = 5 Э. Но для измерений образцов поле пришлось поднимать до 30 - 40 Э. При этом пришлось смириться с тем, что по мере увеличения H эффект Гопкинсона ослабевает. Измерения Ii(T) производились на индукционном магнитометре с графической записью в процессе медленного нагрева.
В результате проведения экспериментов мы ожидали получить ответы на следующие вопросы:
Насколько соблюдается структурная нечувствительность метода, то есть, какова стабильность результата при разном из-за дифференциации гранулометрическом составе одного и того же пепла? Иначе, насколько одинаковы результаты для пепла, отобранного на разном удалении от источника?
Есть ли отличия в магнитных свойствах пеплов разных вулканов?
Различаются ли магнитные свойства пеплов разных извержений одного вулкана?
Рис. 2 |
Опробование метода и калибровка были проведены на монокристалле магнетита. В результате получилась классическая кривая Ii(T) с постепенным ростом, ярким эффектом Гопкинсона и резким спадом в точке Кюри (рис.1, кривая "магнетит"). Образцами для наших исследований послужили небольшие навески (~0,3 г) отдельных фракций пеплов разновозрастных извержений пяти вулканов Камчатки: Безымянный, Ксудач, Опала, Хангар и Шивелуч (рис.2). Для каждого образца были получены кривые основного и повторного нагревов для выявления устойчивости присутствующего магнитного материала к нагревам.
Вулканические пеплы обычно дают кривые Ii(T) с довольно широкими максимумами. Это объясняется естественным разбросом характеристик присутствующих магнитных минералов и уменьшением эффекта Гопкинсона при повышении поля H, требующегося для получения приемлемого выходного сигнала аппаратуры. Но широкие максимумы не позволяют однозначно выявлять TC. Поэтому нами были использованы другие температурные параметры T1, T2, T3 и т.д., названные здесь "характеристическими температурами" и раскрывающие связанные с TC особенности кривых. На кривой Ii(T) нетрудно увидеть ряд почти линейных участков, через которые нетрудно провести аппроксимирующие прямые (см. рис.3). Точка пересечения прямой линии, аппроксимирующей участок крутого высокотемпературного спада, с осью температур использовалась нами как первая характеристическая точка - T1. Вторая характеристическая точка, T2, получается как абсцисса точки пересечения той же прямой с линейной аппроксимацией ближайшего плавного участка нашей кривой. T2 близка к TC, но гораздо более определенна. T1 в совокупности с T2 характеризует такое свойство кривой как крутизна спада на участке перехода минералов из ферримагнитной фазы в парамагнитную. Узкий диапазон смены фаз T2-T1 присущ для мономинеральных магнитных составляющих как на рисунке 1 кривая "магнетит".
Наличие на кривой других пиков характерного Гопкинсонского типа говорит о присутствии в образце нескольких титаномагнетитовых фаз, либо других магнитных минералов. При анализе они отмечаются парами характеристических температур T3-T4, T5-T6 и т.д. (рис.3). Повторение пиков при вторичном нагреве подтверждает их достоверность.
Результаты исследований.
Рис. 3 |
Формы кривых для исследованных образцов тефры можно разбить на 3 категории (рис.1):
С постоянным плавным подъемом и резким спадом после пика. Классическая форма кривой для минералов титано-магнетитового ряда.
С постоянным плавным спадом или с чередованием плавных спадов и подъемов.
Рекомендуем скачать другие рефераты по теме: налоги в россии, сочинение.
1 2 | Следующая страница реферата