Цифровая обработка сигналов
Категория реферата: Рефераты по информатике, программированию
Теги реферата: цель курсовой работы, реферат цена
Добавил(а) на сайт: Абабков.
1 2 3 4 5 6 7 8 9 | Следующая страница реферата
Цифровая обработка сигналов
Введение
Широкое распространение радиоэлектронных устройств с применением цифровой обработки сигналов обуславливает повышенный интерес к вопросам диагностирования их технического состояния.
Одной из разновидностей диагностирования цифровых узлов и блоков является тестовое диагностирование, применение которого на этапе проектирования и изготовления цифровых узлов позволяет определить правильность их функционирования и осуществить процедуру поиска неисправностей. При разработке тестовой диагностики возникает сложность в определении эталонных реакций при тестировании существующих схем, в определении оптимального числа контрольных точек для снятия выходной реакции диагностируемой цифровой схемы. Это можно сделать либо создавая прототип разрабатываемого цифрового устройства и проводя его диагностику аппаратурными методами, либо осуществляя моделирование на ЭВМ как цифрового устройства, так и процесса диагностики. Наиболее рациональным является второй подход, который предполагает создание автоматизированных систем диагностики [1], позволяющих производить диагностику цифровых схем на стадии проектирования и способных решать следующие задачи:
Производить логическое моделирование цифровых схем с помощью ЭВМ. Цель логического моделирования состоит в том, чтобы выполнить функцию проектируемой схемы без её физической реализации. Проверка на правильность моделирования может быть различной в зависимости от уровня представления цифровой схемы в ЭВМ. Если, например, осуществляется проверка только значений логической функции на выходе схемы, то достаточно представить схему на уровне логических элементов. Для того чтобы проверить состояния сигналов в схеме, необходимо точно описать задержки срабатывания всех элементов в условиях синхронизации.
Моделирование неисправностей. Задача обнаружения неисправностей в цифровых схемах состоит в том, чтобы определить, обладает ли цифровая схема требуемым поведением. Для решения этой задачи необходимо, прежде всего, установить модель цифровой схемы как объекта контроля, затем метод обнаружения неисправностей и, наконец, модель неисправностей. С точки зрения особенностей поведения цифровых схем их можно разделить на комбинационные и последовательностные. В отношении обнаружения неисправностей комбинационные схемы являются сравнительно простой моделью. Последовательностные схемы в отношении поведения характеризуются наличием внутренних контуров обратной связи, поэтому обнаружение неисправностей в них в общем случае чрезвычайно затруднено.
Моделирование процесса тестовой диагностики.
Классическая стратегия тестирования цифровых схем основана на формировании тестовых последовательностей, позволяющих обнаруживать заданные множества их неисправностей. Для реализации генератора тестовой последовательности желательно использовать простейшие методы, позволяющие избежать сложной процедуры их синтеза. К ним относятся следующие алгоритмы:
формирование всевозможных входных тестовых наборов, т.е. полного перебора двоичных комбинаций. В результате применения подобного алгоритма генерируются счётчиковые последовательности;
формирование случайных тестовых наборов с требуемыми вероятностями единичного и нулевого символов по каждому входу цифровой схемы;
формирование псевдослучайных тестовых последовательностей.
Основным свойством распространённых алгоритмов формирования тестовых последовательностей является то, что в результате их применения воспроизводятся последовательности очень большой длины. Поэтому на выходах проверяемой цифровой схемы формируются её реакции, имеющие ту же длину. Естественно возникают проблемы их запоминания и хранения. Простейшим решением, позволяющим значительно сократить объём хранимой информации об эталонных выходных реакциях, является получение интегральных оценок, имеющих меньшую размерность. Для этого используются алгоритмы сжатия информации.
Для того чтобы применять метод компактного сжатия тестирования, необходимо рационально выбирать алгоритм формирования тестовых последовательностей и метод сжатия информации.[2]
Для диагностики любой комбинационной схемы особый интерес представляет сигнатурный анализатор, в частности многоканальный сигнатурный анализатор, в основе построения которого лежит алгоритм сжатия информации - сигнатурный анализ.
Анализ методов оценки эффективности компактного тестирования.
Построение сложных цифровых устройств требует повышенного внимания к компактным методам тестирования для каждого конкретного применения. Поэтому возникает необходимость в оценке эффективности того или иного метода компактного тестирования. В настоящее время в литературе рассматриваются способы сравнения методов компактного тестирования.
Было предложено разработать моделирующий алгоритм, позволяющий строить многоканальные сигнатурные анализаторы.
Для этого необходимо было решить следующие задачи:
Логическое моделирование цифровых схем.
Разработка моделирующего алгоритма построения ГПСЧ.
Разработка моделирующего алгоритма построения многоканального сигнатурного анализатора.
Оценка эффективности работы многоканального сигнатурного анализатора.
Разработка алгоритма поиска неисправностей
Глава 1. Существующие методы логического моделирования и диагностики с использованием компактных оценок.
Моделирование логических схем на ЭВМ.
Моделирование сложных логических схем на большом числе входных наборов эффективно можно осуществлять только при помощи ЭВМ. Для того чтобы смоделировать работу устройства на ЭВМ, необходимо описать математическую модель этого устройства в памяти ЭВМ [3].
Логическая схема N считается структурно описанной, если указаны следующие её характеристики: внешние входы схемы - множество X = {x}; внешние выходы схемы - множество Z = {z}; элементы схемы - множество D = {d}; внутренние связи между элементами в виде матрицы связей C = {ci,j}, где ci,j{0,1}; ci,j=1 - если выход элемента di связан со входом элемента dj, для всех элементов d D.
Другим способом описания схемы является описание схемы в виде списков: списка входов схемы - описание множества X, списка выходов - описание множества Z и списка логических элементов и связей между ними - описание множества D и матрицы C. Списки, описывающие схему, могут быть прямыми и обратными.
Прямой схемный список - это описание схемы по входам элементов. Для каждого элемента схемы указывается его порядковый номер на схеме, тип и номера элементов, выходы которых являются входами для данного элемента.
Обратный схемный список - это описание схемы по выходам элементов. Для каждого элемента указывается его номер на схеме, тип и номер элементов, со входами которых соединён выход данного элемента.
Прямой и обратный схемный списки представляют собой компактное описание матрицы связей между элементами C = {ci,j}, причём для задания матрицы достаточно одного из них. Прямой схемный список может быть построен на основе обратного списка, и наоборот.
Рекомендуем скачать другие рефераты по теме: организация диплом, древния греция реферат.
1 2 3 4 5 6 7 8 9 | Следующая страница реферата