Цифровая подпись
Категория реферата: Рефераты по информатике, программированию
Теги реферата: скачать решебник, контрольная работа за полугодие
Добавил(а) на сайт: Усов.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата
но s=s', следовательно:
RT(k0)=RT'(k0) и R2nT–1–T(k1)=R2nT–1–T'(k1).
Положим для определенности TЈT', тогда справедливо следующее:
RT'–T(k0*)=k0*,RT'–T(k1*)=k1*,где k0*=RT(k0), k1*=R2nT–1–T'(k1)
Последнее условие означает, что прокручивание двух различных блоков данных одно и то же число раз оставляет их значения неизменными. Вероятность такого события чрезвычайно мала и может не приниматься во внимание.
Таким образом рассмотренная модификация схемы Диффи–Хеллмана делает возможным подпись не одного бита, а целой битовой группы. Это позволяет в несколько раз уменьшить размер подписи и ключей подписи/проверки данной схемы. Однако надо понимать, что увеличение размера подписываемых битовых групп приводит к экспоненциальному росту объема необходимых вычислений и начиная с некоторого значения делает работу схемы также неэффективной. Граница «разумного размера» подписываемой группы находится где-то около десяти бит, и блоки большего размера все равно необходимо подписывать «по частям».
Теперь найдем размеры ключей и подписи, а также объем необходимых для реализации схемы вычислений. Пусть размер хэш–блока и блока используемого шифра одинаковы и равны n, а размер подписываемых битовых групп равен nT. Предположим также, что если последняя группа содержит меньшее число битов, обрабатывается она все равно как полная nT-битовая группа. Тогда размеры ключей подписи/проверки и самой подписи совпадают и равны следующей величине:
бит,
где йxщ обозначает округление числа x до ближайшего целого в сторону возрастания. Число операций шифрования EK(X), требуемое для реализации процедур схемы, определяются нижеследующими соотношениями:
при выработке ключевой информации оно равно:
,
при выработке и проверке подписи оно вдвое меньше:
.
Размер ключа подписи и проверки подписи можно дополнительно уменьшить следующими приемами:
1. Нет необходимости хранить ключи подписи отдельных битовых групп, их можно динамически вырабатывать в нужный момент времени с помощью генератора криптостойкой гаммы. Ключом подписи в этом случае будет являться обычный ключ использованного в схеме подписи блочного шифра. Например, если схема подписи будет построена на алгоритме ГОСТ 28147-89, то размер ключа подписи будет равен 256 битам.
2. Аналогично, нет необходимости хранить массив ключей проверки подписи отдельных битовых групп блока, достаточно хранить его значение хэш-функции этого массива. При этом алгоритм выработки ключа подписи и алгоритм проверки подписи будут дополнены еще одним шагом – вычислением хэш-функции массива проверочных комбинаций отдельных битовых групп.
Таким образом, проблема размера ключей и подписи решена, однако, второй недостаток схемы – одноразовость ключей – не преодолен, поскольку это невозможно в рамках подхода Диффи–Хеллмана.
Для практического использования такой схемы, рассчитанной на подпись N сообщений, отправителю необходимо хранить N ключей подписи, а получателю – N ключей проверки, что достаточно неудобно. Эта проблема может быть решена в точности так же, как была решена проблема ключей для множественных битовых групп – генерацией ключей подписи для всех N сообщений из одного мастер-ключа и свертывание всех проверочных комбинаций в одну контрольную комбинацию с помощью алгоритма вычисления хэш-функции.
Такой подход решил бы проблему размера хранимых ключей, но привел бы к необходимости вместе подписью каждого сообщения высылать недостающие N–1 проверочных комбинаций, необходимых для вычисления хэш-функции массива всех контрольных комбинаций отдельных сообщений. Ясно, что такой вариант не обладает преимуществами по сравнению с исходным.
Упомянутыми выше авторами был предложен механизм, позволяющий значительно снизить остроту проблемы. Его основная идея – вычислять контрольную комбинацию (ключ проверки подписи) не как хэш-функцию от линейного массива проверочных комбинаций всех сообщений, а попарно – с помощью бинарного дерева. На каждом уровне проверочная комбинация вычисляется как хэш-функция от конкатенации двух проверочных комбинаций младшего уровня. Чем выше уровень комбинации, тем больше отдельных ключей проверки "учитывается" в ней.
Предположим, что наша схема рассчитана на 2L сообщений. Обозначим через i-тую комбинацию l-того уровня. Если нумерацию комбинаций и уровней начинать с нуля, то справедливо следующее условие: 0 Ј i < 2L–l, а i-ая проверочная комбинация l-того уровня рассчитана на 2l сообщений с номерами от iЧ2l до (i+1)Ч2l–1 включительно. Число комбинаций нижнего, нулевого уровня равно 2L, а самого верхнего, L-того уровня – одна, она и является контрольной комбинацией всех 2L сообщений, на которые рассчитана схема.
На каждом уровне, начиная с первого, проверочные комбинации рассчитываются по следующей формуле:
,
где через A||B обозначен результат конкатенации двух блоков данных A и B, а через H(X) – процедура вычисления хэш-функции блока данных X.
При использовании указанного подхода вместе с подписью сообщения необходимо передать не N–1, как в исходном варианте, а только log2N контрольных комбинаций. Передаваться должны комбинации, соответствующие смежным ветвям дерева на пути от конечной вершины, соответствующей номеру использованной подписи, к корню.
Рекомендуем скачать другие рефераты по теме: шпори политология, конспект по чтению.
Предыдущая страница реферата | 5 6 7 8 9 10 11 12 13 14 15 | Следующая страница реферата