Цифровая подпись
Категория реферата: Рефераты по информатике, программированию
Теги реферата: реферат на тему технология, шпаргалки по русскому
Добавил(а) на сайт: Ipat.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
А теперь вспомним как мы создавали открытый и закрытый ключи. Мы подбирали с помощью алгоритма Евклида d такое, что e*d+(p-1)(q-1)*y=1, то есть e*d=(-y)(p-1)(q-1)+1. А следовательно в последнем выражении предыдущего абзаца мы можем заменить показатель степени на число (e*d). Получаем (xe*d)mod n = x. То есть для того чтобы прочесть сообщение ci=((mi)e)mod n достаточно возвести его в степень d по модулю m:
((ci)d)mod n = ((mi)e*d)mod n = mi.
На самом деле операции возведения в степень больших чисел достаточно трудоемки для современных процессоров, даже если они производятся по оптимизированным по времени алгоритмам. Поэтому обычно весь текст сообщения кодируется обычным блочным шифром (намного более быстрым), но с использованием ключа сеанса, а вот сам ключ сеанса шифруется как раз асимметричным алгоритмом с помощью открытого ключа получателя и помещается в начало файла.
Алгоритм ЭльГамаля
Общие сведения
Криптографы со своей стороны вели поиски более
эффективных систем открытого шифрования и в 1985 году Т.Эль-Гамаль (США)
предложил следующую схему на основе возведения в степень по модулю большого
простого числа P.
Задается большое простое число P и целое число A, 1<A<P. Сообщения представляются целыми числами M из интервала 1<M<P.
Шифрование сообщений
Протокол передачи сообщения M выглядит следующим образом.
абоненты знают числа A и P;
абоненты генерируют независимо друг от друга случайные числа:
Ka,Kb
удовлетворяющих условию:
1<K<P
получатель вычисляет и передаёт отправителю число B, определяемое последовательностью:
В=AKbmоd(P)
отправитель шифрует сообщение M и отправляет полученную последовательность получателю
C=M*BKamоd(P)
получатель расшифровывает полученное сообщение
D=(AKa)-Kbmоd(P)
M=C*Dmоd(P)
В этой системе открытого шифрования та же степень защиты, что для алгоритма RSA с модулем N из 200 знаков, достигается уже при модуле P из 150 знаков. Это позволяет в 5-7 раз увеличить скорость обработки информации. Однако, в таком варианте открытого шифрования нет подтверждения подлинности сообщений.
Подтверждение подлинности отправителя
Для того, чтобы обеспечить при открытом шифровании по модулю простого числа P также и процедуру подтверждения подлинности отправителя Т.ЭльГамаль предложил следующий протокол передачи подписанного сообщения M:
абоненты знают числа A и P;
отправитель генерирует случайное число и хранит его в секрете:
Рекомендуем скачать другие рефераты по теме: рефераты баллы, шпаргалки бесплатно.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата