Эффективность работы военно-медицинского учреждения
Категория реферата: Рефераты по информатике, программированию
Теги реферата: ответы по истории, использование рефератов
Добавил(а) на сайт: Гавриков.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
В качестве средств разработки специального программного обеспечения была выбрана система Borland C++ Builder 1.0 Client/Server. Выбор обуславливается тем, что с его помощью можно в кратчайшие сроки разработать быстрое, компактное и полноценное Windows-приложение, работающее с базами данных.
Для разработки программного обеспечения по курсу "Экономика" был выбран MSM 4.3, так как программа должна будет работать под операционными системами Windows 95.
Для разработки программного обеспечения по курсу "Экология и охрана труда" был выбран Borland C++ 5.0., так как программа должна будет работать под операционной системой MS DOS 5.0 по требованию кафедры.
Для разработки программного обеспечения по курсу "Гражданская оборона" был выбран Visual Basic 4.0., так как программа должна будет работать под операционной системой Windows 95 по требованию кафедры.
Для связи с физическими таблицами используется специальная программа Borland Database Engine 4.0.
Выводы по главе 1
В данной главе содержатся результаты системного анализа и синтеза РИСК II, а именно:
Проведен анализ замысла, целей, направлений и этапов разработки РИСК II;
Проведен анализ требований заказчика и возможностей разработчика. результаты обследования объектов заказчика:
Разработана архитектура РИСК II, представляющая собой совокупность территориально удаленных объектов (медицинских учреждений), взаимодействующих между собой через систему обмена данными. Внутри объектов взаимодействие осуществляется посредством локальных вычислительных сетей. Для разработки комплекса средств автоматизации интерес представляет ЛВС госпиталя.
На основе разработанной архитектуры РИСК II и требований Заказчика на данном этапе было организовано взаимодействие исполнителей для решения поставленных задач.
Проведено обоснование использования программных средств, необходимых для разработки и эксплуатации задач.
ГЛАВА 2. МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КОМПЛЕКСА ЗАДАЧ "ОЦЕНКА ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ ВОЕННО-МЕДИЦИНСКОГО УЧРЕЖДЕНИЯ”
2.1 Постановка задачи и её спецификация
Основной целью разработки КЗ “Оценка эффективности работы военного госпиталя методом главных компонент” является автоматизация обработки статистических данных, представляющих собой показатели функционирования подразделений ГВКГ имени академика Н.Н. Бурденко.
Для повышения эффективности использования коечного фонда требуется объективная оценка показателей работы отделений и центров госпиталя. В этой связи комплекс задач “Оценка эффективности функционирования военно-медицинского учреждения”, должен позволять по совокупности показателей, характеризующих различные аспекты функционирования отделений медицинского учреждения, определить сравнительную эффективность их работы. Одним из приемлемых и достаточно простых в реализации математических методов решения поставленной задачи является метод главных компонент (МГК).
Метод главных компонент, сущность которого состоит в сведении множества показателей к нескольким суммарным интегральным оценкам, в данном случае обладает существенными преимуществами [3] по сравнению с другими статистическими методами, такими как дисперсионный, регрессионный и факторный анализы [7,9].
Однако, недостаток метода главных компонент состоит в сложности нахождения собственных чисел и собственных векторов матриц большой размерности [3,6] при ручной обработке которых, невозможно получить достаточно точные результаты за приемлемое время, поэтому необходима ее автоматизация с применением ЭВМ.
Для достижения цели проекта требуется решить следующие задачи:
изучить теоретические основы метода главных компонент;
разработать математическую модель работы отделений учреждения, т. е. выделить исследуемые и измеряемые параметры, установить зависимости между ними и дать математическую постановку задачи;
выбрать метод решения задачи;
разработать алгоритм и программу, реализующей этот метод.
2.1.1 Метод главных компонент
Объекты изучения в прикладных областях могут быть всесторонне охарактеризованы только при помощи целого набора признаков. При характеристике объекта исследования случайными многомерными признаками строится корреляционная матрица, элементы которой учитывают тесноту линейной стохастической связи. Однако при большом числе признаков характеристика выявленных связей становится труднообозримой задачей. Возникает потребность в описании объектов меньшим числом обобщенных показателей, например факторами или главными компонентами. Главные компоненты являются более удобными укрупненными показателями. Они отражают внутренние объективно существующие закономерности, которые не поддаются непосредственному наблюдению.
При корреляционном или регрессионном анализе на основе полученной корреляционной матрицы строятся, например, уравнения регрессии, связывающие факторные признаки с результативными. Сами уравнения регрессии являются конечной целью исследования. По ним проводится содержательная интерпретация полученных результатов и принимаются соответствующие решения. При использовании метода главных компонент корреляционная матрица используется как исходная ступень для дальнейшего анализа наблюдаемых ранее значений признаков. Появляется возможность извлечения дополнительной информации об изучаемом процессе или объекте.
2.1.2 Задачи решаемые методом главных компонент
С помощью метода главных компонент можно решить четыре основных типа задач.
Первая задача - отыскание скрытых, но объективно существующих закономерностей, определяемых воздействием внутренних и внешних причин.
Вторая задача - описание изучаемого процесса числом главных компонент m, значительно меньшим, чем число первоначально взятых признаков n. Главные компоненты адекватно отражают исходную информацию в более компактной форме. Выделенные главные компоненты содержат больше информации, чем непосредственно замеряемые признаки.
Третья задача - выявление и изучение стохастической связи признаков с главными компонентами. Выявление признаков, наиболее тесно связанных с данной главной компонентой., что позволяет принять научно обоснованное управляющее воздействие, способствующее повышению эффективности функционирования изучаемого процесса.
Существует возможность использования полученных данных для решения четвертой задачи, которая заключается в прогнозировании хода развития процесса на основе уравнения регрессии, построенного по полученным главным компонентам.
Негативной стороной метода является сложность математического аппарата, требующая знания как теории вероятностей и математической статистики, так и линейной алгебры и математического обеспечения ЭВМ. Однако, в настоящее время, в связи с большим прогрессом в области вычислительной техники и программного обеспечения ЭВМ, большинство вычислительных трудностей относительно легко разрешаются.
2.1.3 Анализ условий допущений и ограничений задачи
В ходе алгоритма нахождения главных компонент требуется найти собственные векторы и собственные значения матрицы парных корреляций. На настоящий момент наиболее быстрыми являются алгоритмы QR разложения [2,5] и их частные случаи. В частности, в связи с тем, что получающиеся в ходе исследования матрицы являются симметричными (симметрическими), то для нахождения собственных чисел и собственных векторов удобен относительно простой метод Якоби [6].
2.2. Обоснование проектных решений
2.2.1. Математическая модель метода главных компонент
Известно, что истинная величина изучаемого объекта содержит по крайней мере два компонента: истинную характеристику оцениваемого явления и ошибку измерения, которая зависит от большого числа причин. Если измерения проводятся в таких областях, как экономика, биология, медицина, психология, то добавляется третья составляющая, зависящая от вариабельности изучаемого признака, индивида или объекта. Таким образом, зарегистрированное значение может быть представлено в виде суммы , где - зарегистрированное значение изменяемого признака н i-ого объекта исследования, - истинное значение (математическое ожидание) измеряемого признака у i - ого индивида, - вариативное значение изменяемого признака i - ого индивида, - ошибка измерения при определении j - ого признака у i - ого объекта исследования.
В основу метода главных компонент положена линейная модель. Если N - число исследуемых объектов, n - число признаков, то математическая модель принимает вид:
, (2.1)
где r,j =1,2,...n; f - r-я главная компонента; - вес r-ой компоненты в j-ой переменной; -нормированное значение j-ого признака, полученное из эксперимента, на основе наблюдения. В матричной форме y=Af.
Для исследования начальными данными являются ковариации или коэффициенты корреляции. В дальнейшем будем использовать коэффициенты корреляции.
Для установления связи между главными компонентами и коэффициентами корреляции перепишем формулу для любого i в виде:
(2.2)
Вариабельность, зависящая от особенностей объектов, является причиной разброса показаний признаков от объекта к объекту относительно математического ожидания. Полная дисперсия выражается через дисперсию главных компонент, а так как дисперсии нормированных величин равны единице, то можно записать:
.(2.3)
Поскольку главные компоненты ортогональны, то выражение упрощается . Слева записана дисперсия, а справа доли полной дисперсии, относящиеся к соответствующим главным компонентам. Дисперсия является характеристикой изменчивости случайной величины, её отклонений от среднего значения. Полный вклад r-ого факторов дисперсию всех n признаков определяет ту долю общей дисперсии, которую данная главная компонента объясняет.
Этот вклад вычисляется по формуле:
Рекомендуем скачать другие рефераты по теме: россия диплом, государство реферат.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата