Генетический алгоритм глобальной трассировки
Категория реферата: Рефераты по информатике, программированию
Теги реферата: рефераты на казахском языке, реферат на тему техника
Добавил(а) на сайт: Рейслер.
Предыдущая страница реферата | 1 2 3 4 5
С помощью коэффициентов Кi, которые для «лучших» индивидуальностей имеют большие значения, чем у «худших», достигаются увеличение вероятности выбора «лучших» индивидуальностей.
Временная сложность алгоритма определяется общими (подготовительными) затратами to и затратами в пределах каждого поколения td . Общие затраты складываются из затрат на построении минимальных связывающих деревьев td ,формирование вариантов реализации ребер tb ,и формирования исходной популяции tи: to=td+tb+tи.
Затраты на построение МСД находятся в зависимости от числа МСД. С другой стороны при построении конкретного МСД затраты пропорциональны квадрату числа связываемых вершин . Учитывая , что число ребер n всех МСД пропорционально числу МСД , можно считать, что оценка ВСА tо лежит в пределах О(n)-O(n2), причем чем больше n тем ближе к О(n).
Затраты в пределах поколения tn складываются из затрат на операторы кроссинговера tк , мутации tm ,расчета фитнесса tф и селекции tс .
Как уже указывалось выше затраты tк ,tм и tф при обработке одной хромосомы имеют линейную зависимость от n . tс имеет линейную зависимость от объема популяции М . Тогда временные затраты в пределах поколения имеют оценку О(n×M). Для Т генераций временная сложность алгоритма имеет оценку О(n×M×T) . Учитывая что параметры М и Т сравнимы или значительно меньше n, можно считать , что оценка временной сложности всего алгоритма в целом лежит в пределах О(n2)-O(n3).
4. Экспериментальные исследования генетического алгоритма глобальной трассировки
Алгоритм глобальной трассировки был реализован на языке С++, экспериментальные исследования проводились на ЭВМ типа IBM PC/AT Pentium 133.
При проведении экспериментальных исследований преследовались две цели:
Первой целью являлось исследование механизмов генетического поиска для задачи глобальной трассировки. Для достижения этой цели исследовалось влияние управляющих операторов, таких как: размер популяции М, число поколений Т, вероятность мутации РМ, вероятность кроссинговера РК. В результате этих исследований определялось такое сочетание значений этих параметров, которое обеспечивает наивысшую эффективность генетических процедур для задачи глобальной трассировки.
Второй целью являлось исследование собственно, эффективности разработанного генетического алгоритма. Исследовались влияния таких параметров, как число вариантов маршрутов для каждого ребра.
Для проведения исследований были синтезированы 5 тестовых примеров.
Основные характеристики примеров.
Использовалось КП с размерами 10*10 (10 дискретов по горизонтали и 10 дискретов по вертикали). Выводы, связываемые цепями, размещались внутри дискретов. В каждом дискрете только один вывод одной цепи. Число выводов, связываемых одной цепью - от 2 до 5. В один дискрет назначалось до 10 выводов. Среднее число цепей - 200 -250. Назначение выводов в дискреты осуществлялось случайным образом.
Оптимизация проводилась по критерию:
F1= ("i)[Cmin£Ci=ai-bi]
Если оказывалось, что Сmin
Скачали данный реферат: Митродора, Jadrennikov, Bogun, Баев, Арнольд, Dezhnjov, Silan.
Последние просмотренные рефераты на тему: 7 ответов, ресурсы реферат, дипломы бесплатно, анализ темы курсовой работы.
Предыдущая страница реферата | 1 2 3 4 5