Кибернетика и сознание. Проблема искусственного интеллекта
Категория реферата: Рефераты по информатике, программированию
Теги реферата: шпаргалки для студентов, решебник по математике класс виленкин
Добавил(а) на сайт: Голодяев.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Но что значит по «достаточно широкому кругу вопросов», о котором идет
речь в критерии Тьюринга и в высказывании В. М. Глушкова? На начальных
этапах разработки проблемы искусственного интеллекта ряд исследователей, особенно занимающихся эвристическим программированием, ставили задачу
создания интеллекта, успешно функционирующего в любой сфере деятельности.
Это можно назвать разработкой «общего интеллекта». Сейчас большинство работ
направлено на создание «профессионального искусственного интеллекта», т. е.
систем, решающих интеллектуальные задачи из относительно ограниченной
области (например, управление портом, интегрирование функций, доказательство теорем геометрии и т.п.). В этих случаях «достаточно широкий
круг вопросов» должен пониматься как соответствующая область предметов.
Исходным пунктом наших рассуждений об искусственном интеллекте было
определение такой системы как решающей мыслительные задачи. Но перед нею
ставятся и задачи, которые люди обычно не считают интеллектуальными, поскольку при их решении человек сознательно не прибегает к перестройке
проблемных ситуаций. К их числу относится, например, задача распознания
зрительных образов. Человек узнает человека, которого видел один-два раза, непосредственно в процессе чувственного восприятия. Исходя из этого
кажется, что эта задача не является интеллектуальной. Но в процессе
узнавания человек не решает мыслительных задач лишь постольку, поскольку
программа распознания не находится в сфере осознанного. Но так как в
решении таких задач на неосознанном уровне участвует модель среды, хранящаяся в памяти, то эти задачи в сущности являются интеллектуальными.
Соответственно и система, которая ее решает, может считаться
интеллектуальной. Тем более это относится к «пониманию» машиной фраз на
естественном языке, хотя человек в этом не усматривает обычно проблемной
ситуации.
Теория искусственного интеллекта при решении многих задач сталкивается с гносеологическими проблемами.
Одна из таких проблем состоит в выяснении вопроса, доказуема ли теоретически (математически) возможность или невозможность искусственного интеллекта. На этот счет существуют две точки зрения. Одни считают математически доказанным, что ЭВМ в принципе может выполнить любую функцию, осуществляемую естественным интеллектом. Другие полагают в такой же мере доказанным математически, что есть проблемы, решаемые человеческим интеллектом, которые принципиально недоступны ЭВМ. Эти взгляды высказываются как кибернетиками, так и философами.
Проблема искусственного интеллекта
Гносеологический анализ проблемы искусственного интеллекта вскрывает роль таких познавательных орудий, как категории, специфическая семиотическая система, логические структуры, ранее накопленное знание. Они обнаруживаются не посредством исследования физиологических или психологических механизмов познавательного процесса, а выявляются в знании, в его языковом выражении. Орудия познания, формирующиеся в конечном счете на основе практической деятельности, необходимы для любой системы, выполняющей функции абстрактного мышления, независимо от ее конкретного материального субстрата и структуры. Поэтому, чтобы создать систему, выполняющую функции абстрактного мышления, т. е. в конечном счете формирующую адекватные схемы внешних действий в существенно меняющихся средах, необходимо наделить такую систему этими орудиями.
Развитие систем искусственного интеллекта за последние десятилетия идет по этому пути. Однако степень продвижения в данном направлении в отношении каждого из указанных познавательных орудий неодинакова и в целом пока незначительна.
1. В наибольшей мере системы искусственного интеллекта используют
формально-логические структуры, что обусловлено их неспецифичностью для
мышления и в сущности алгоритмическим характером. Это дает возможность
относительно легкой их технической реализации. Однако даже здесь
кибернетике предстоит пройти большой путь. В системах искусственного
интеллекта еще слабо используются модальная, императивная, вопросная и иные
логики, которые функционируют в человеческом интеллекте и не менее
необходимы для успешных познавательных процессов, чем давно освоенные
логикой, а затем и кибернетикой формы вывода. Повышение «интеллектуального»
уровня технических систем, безусловно, связано не только с расширением
применяемых логических средств, но и с более интенсивным их использованием
(для проверки информации на непротиворечивость, конструирования планов
вычислений и т. д.).
2. Намного сложнее обстоит дело с семиотическими системами, без которых интеллект невозможен. Языки, используемые в ЭВМ, еще далеки от семиотических структур, которыми оперирует мышление.
Прежде всего для решения ряда задач необходимо последовательное приближение семиотических систем, которыми наделяется ЭВМ, к естественному языку, точнее, к использованию его ограниченных фрагментов. В этом плане предпринимаются попытки наделить входные языки ЭВМ универсалиями языка, например полисемией (которая элиминируется при обработке в лингвистическом процессоре). Разработаны проблемно-ориентированные фрагменты естественных языков, достаточные для решения системой ряда практических задач. Наиболее важным итогом этой работы является создание семантических языков (и их формализация), в которых слова-символы имеют интерпретацию.
Однако многие универсалии естественных языков, необходимые для
выполнения ими познавательных функций, в языках искусственного интеллекта
пока реализованы слабо (например, открытость) или используются ограниченно
(например, полисемия). Все большее воплощение в семиотических системах
универсалий естественного языка, обусловленных его познавательной функцией, выступает одной из важнейших линий совершенствования систем искусственного
интеллекта, особенно тех, в которых проблемная область заранее жестко не
определена.
Современные системы искусственного интеллекта способны осуществлять
перевод с одномерных языков на многомерные. В частности, они могут строить
диаграммы, схемы, чертежи, графы, высвечивать на экранах кривые и т. д. ЭВМ
производят и обратный перевод (описывают графики и тому подобное с помощью
символов). Такого рода перевод является существенным элементом
интеллектуальной деятельности. Но современные системы искусственного
интеллекта пока не способны к непосредственному (без перевода на
символический язык) использованию изображений или воспринимаемых сцен для
«интеллектуальных» действий. Поиск путей глобального (а не локального)
оперирования информацией составляет одну из важнейших перспективных задач
теории искусственного интеллекта.
3. Воплощение в информационные массивы и программы систем
искусственного интеллекта аналогов категорий находится пока в начальной
стадии. Аналоги некоторых категорий (например, «целое», «часть», «общее»,
«единичное») используются в ряде систем представления знаний, в частности в
качестве «базовых отношений», в той мере, в какой это необходимо для тех
или иных конкретных предметных или проблемных областей, с которыми
взаимодействуют системы.
В формализованном понятийном аппарате некоторых систем представления
знаний предприняты отдельные (теоретически существенные и практически
важные) попытки выражения некоторых моментов содержания и других категорий
(например, «причина», «следствие»). Однако ряд категорий (например,
«сущность», «явление») в языках систем представления знаний отсутствует.
Проблема в целом разработчиками систем искусственного интеллекта в полной
мере еще не осмыслена, и предстоит большая работа философов, логиков и
кибернетиков по внедрению аналогов категорий в системы представления знаний
и другие компоненты интеллектуальных систем. Это одно из перспективных
направлений в развитии теории и практики кибернетики.
4. Современные системы искусственного интеллекта почти не имитируют сложную иерархическую структуру образа, что не позволяет им перестраивать проблемные ситуации, комбинировать локальные части сетей знаний в блоки, перестраивать эти блоки и т. д.
Не является совершенным и взаимодействие вновь поступающей информации с совокупным знанием, фиксированным в системах. В семантических сетях и фреймах пока недостаточно используются методы, благодаря которым интеллект человека легко пополняется новой информацией, находит нужные данные, перестраивает свою систему знаний и т. д.
5. Еще в меньшей мере современные системы искусственного интеллекта способны активно воздействовать на внешнюю среду, без чего не может; осуществляться самообучение и вообще совершенствование «интеллектуальной» деятельности.
Таким образом, хотя определенные шаги к воплощению гносеологических
характеристик мышления в современных системах искусственного интеллекта
сделаны, но в целом эти системы еще далеко не владеют комплексом
гносеологических орудий, которыми располагает человек и которые необходимы
для выполнения совокупности функций абстрактного мышления. Чем больше
характеристики систем искусственного интеллекта будут приближены к
гносеологическим характеристикам мышления человека, тем ближе будет их
«интеллект» к интеллекту человека, точнее, тем выше будет их способность к
комбинированию знаковых конструкций, воспринимаемых и интерпретируемых
человеком в качестве решения задач и вообще воплощения мыслей.
В связи с этим возникает сложный вопрос. При анализе познавательного процесса гносеология абстрагируется от психофизиологических механизмов, посредством которых реализуется этот процесс. Но из этого не следует, что для построения систем искусственного интеллекта эти механизмы не имеют значения. Вообще говоря, не исключено, что механизмы, необходимые для воплощения неотъемлемых характеристик интеллектуальной системы, не могут быть реализованы в цифровых машинах или даже в любой технической системе, включающей в себя только компоненты неорганической природы. Иначе говоря, в принципе не исключено, что хотя мы можем познать все гносеологические закономерности, обеспечивающие выполнение человеком его познавательной функции, но их совокупность реализуема лишь в системе, субстратно тождественной человеку.
Такой взгляд обосновывается X. Дрейфусом. «Телесная организация человека, - пишет он, - позволяет ему выполнять... функции, для которых нет машинных программ - таковые не только еще не созданы, но даже не существуют в проекте... Эти функции включаются в общую способность человека к приобретению телесных умений и навыков. Благодаря этой фундаментальной способности наделенный телом субъект может существовать в окружающем его мире, не пытаясь решить невыполнимую задачу формализации всего и вся».
Как отмечает Б. В. Бирюков, подчеркивание значения «телесной организации» для понимания особенностей психических процессов, в частности возможности восприятия, заслуживает внимания. Качественные различия в способности конкретных систем отражать мир тесно связаны с их структурой, которая хотя и обладает относительной самостоятельностью, но не может преодолеть некоторых рамок, заданных субстратом. В процессе биологической эволюции совершенствование свойства отражения происходило на основе усложнения нервной системы, т. е. субстрата отражения. Не исключается также, что различие субстратов ЭВМ и человека может обусловить фундаментальные различия в их способности к отражению, что ряд функций человеческого интеллекта в принципе недоступен таким машинам.
Иногда в философской литературе утверждается, что допущение
возможности выполнения технической системой интеллектуальных функций
человека означает сведение высшего (биологического и социального) к низшему
(к системам из неорганических компонентов) и, следовательно, противоречит
материалистической диалектике. Однако в этом рассуждении не учитывается, что пути усложнения материи однозначно не предначертаны и не исключено, что
общество имеет возможность создать из неорганических компонентов
(абстрактно говоря, минуя химическую форму движения) системы не менее
сложные и не менее способные к отражению, чем биологические. Созданные
таким образом системы являлись бы компонентами общества, социальной формой
движения. Следовательно, вопрос о возможности передачи интеллектуальных
функций техническим системам, и в частности о возможности наделения их
рассмотренными в работе гносеологическими орудиями, не может быть решен
только исходя из философских соображений. Он должен быть подвергнут анализу
на базе конкретных научных исследований.
X. Дрейфус подчеркивает, что ЭВМ оперирует информацией, которая не имеет значения, смысла. Поэтому для ЭВМ необходим перебор огромного числа вариантов. Телесная организация человека, его организма позволяет отличать значимое от незначимого для жизнедеятельности и вести поиск только в сфере первого. Для «нетелесной» ЭВМ, утверждает Дрейфус, это недоступно. Конечно, конкретный тип организации тела позволяет человеку ограничивать пространство возможного поиска. Это происходит уже на уровне анализаторной системы. Совсем иначе обстоит дело в ЭВМ. Когда в кибернетике ставится общая задача, например распознания образов, то эта задача переводится с чувственно-наглядного уровня на абстрактный. Тем самым снимаются ограничения, не осознаваемые человеком, но содержащиеся в его «теле», в структуре органов чувств и организма в целом. Они игнорируются ЭВМ. Поэтому пространство поиска резко увеличивается. Это значит, что к «интеллекту» ЭВМ предъявляются более высокие требования (поиска в более обширном пространстве), чем к интеллекту человека, к которому приток информации ограничен физиологической структурой его тела.
Системы, обладающие психикой, отличаются от ЭВМ прежде всего тем, что им присущи биологические потребности, обусловленные их материальным, биохимическим субстратом. Отражение внешнего мира происходит сквозь призму этих потребностей, в чем выражается активность психической системы. ЭВМ не имеет потребностей, органически связанных с ее субстратом, для нее как таковой информация незначима, безразлична. Значимость, генетически заданная человеку, имеет два типа последствий. Первый-круг поиска сокращается, и тем самым облегчается решение задачи. Второй-нестираемые из памяти фундаментальные потребности организма обусловливают односторонность психической системы. Дрейфус пишет в связи с этим: «Если бы у нас на Земле очутился марсианин, ему, наверное, пришлось бы действовать в абсолютно незнакомой обстановке; задача сортировки релевантного и нерелевантного, существенного и несущественного, которая бы перед ним возникла, оказалась бы для него столь же неразрешимой, как и для цифровой машины, если, конечно, он не сумеет принять в расчет никаких человеческих устремлений». С этим нельзя согласиться. Если «марсианин» имеет иную биологию, чем человек, то он имеет и иной фундаментальный слой неотъемлемых потребностей, и принять ему «человеческие устремления» значительно труднее, чем ЭВМ, которая может быть запрограммирована на любую цель.
Животное в принципе не может быть по отношению к этому фундаментальному слою перепрограммировано, хотя для некоторых целей оно может быть запрограммировано вновь посредством дрессировки. В этом (но только в этом) смысле потенциальные интеллектуальные возможности машины шире таких возможностей животных. У человека над фундаментальным слоем биологических потребностей надстраиваются социальные потребности, и информация для него не только биологически, но и социально значима. Человек универсален и с точки зрения потребностей и с точки зрения возможностей их удовлетворения. Однако эта универсальность присуща ему как социальному существу, производящему средства целесообразной деятельности, в том числе и системы искусственного интеллекта.
Рекомендуем скачать другие рефераты по теме: шпаргалки по математике юридические рефераты, физика 7 класс.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата