Встречаются четырех и более мерные вектора, например, модель CMYK, она применяется, когда имеются четыре основных цветовых красителя. Двумерные модели называют дуплексами. Их применяют в полиграфии, например, при печати стандартного grayscale изображения, реально в промышленности оно будет выполнено лишь в ~50 градациях серого, и для повышения числа градаций вводят вторую краску.
Индексированный. Для уменьшения объемов изображения или для использования определенных цветов используют данный формат. Элемент матрицы ai,joman"> является указателем на таблицу цветов. Число используемых цветов равно 2K, где K - количество бит, используемый для хранения элемента матрицы. Цвета в указываемой таблице могут кодироваться другим числом бит. Например, в 256 цветовых режимах видеоадаптеров выбирается 256 цветов из 262144 возможных, так как выбираемые цвета представляются в RGB формате и для каждой цветовой компоненты кодируется 6-ю битами. Существует много методов преобразования многоканальных изображения в индексированные (Error diffusion, ближайшего цвета ...).
Фильтрация изображения.
Понятие фильтрации в данном случае весьма обширно, и включает в себя любое преобразование графической информации. Фильтрация может быть задана не только в виде формулы, но и в виде алгоритма, его реализующая. Человек запоминает графическую информацию, в основном, в виде трех ее составляющих
Низкочастотные составляющие изображения. Они несут информацию о локализации объектов, составляющих изображения. Эта составляющая наиболее важна, так как связка глаз - мозг уделяет ей первостепенное внимание.
Высокочастотные составляющие изображения. Они отвечают за цветовые перепады - контуры изображения. Увеличивая их, мы повышаем резкость изображения.
Текстуры изображения. Чтобы понятно объяснить, что это такое проведем небольшой эксперимент. Расслабьтесь, вспомните интерьер вашего дома, например, письменный стол. Вы знаете его очертания, местоположение, цвет - это низкочастотные характеристики, вспомнили его заостренные углы, небольшую царапину где-нибудь ближе к его кромке - это высокочастотные составляющие. Также Вы знаете, что стол деревянный, но не можете в точности рассказать обо всех мельчайших деталях его поверхности, хотя общие характеристики (коричневый с темными впадинами, две области расхождения концентрических эллипсов от сучков) - наверняка. В данном случае в скобках - описание текстуры. Можно трактовать текстуру как характеристику участков в контурах изображения.
Будем рассматривать фильтры в виде квадратной матрицы A. Пусть исходное изображение X, а получаемое как результат фильтрации - Y. Для простоты будем использовать матрицы 3x3:
Рекурсивными фильтрами первого рода будут такие фильтры, выход Y которых формируется перемножением весовых множителей A с элементами изображения X. Для примера рассмотрим фильтры низких частот:
.
Фильтром низких частот пользуются часто для того, чтобы подавить шум в изображении, сделать его менее резким. Используя фильтр A3 , будем получать изображение Y следующим образом:
Выход фильтра второго рода формируется аналогично первому, плюс фильтра B:
Для простоты рассмотрим одномерный фильтр вида::
Рассмотрим и другие фильтры:
Высокочастотные (для подчеркивания резкости изображения):
Для подчеркивания ориентации:
Подчеркивание без учета ориентации (фильтры Лапласа):
.
Корреляционный:
,где
- коэффициенты корреляции между соседними элементами по строке (столбцу). Если они равны нулю то отфильтрованное изображение будет совпадать с исходным, если они равны единице, то фильтр будет эквивалентен лапласиану. При обработке изображений очень часто используют последовательность фильтров: низкочастотный + Лапласа. Часто используют и нелинейную фильтрацию. Для контрастирования перепадов изображения используют градиентный фильтр:
, или его упрощенный вид:
.
Еще один часто используемый нелинейный фильтр - Собела:
A0 ... A7 - входы, yi,j - результат фильтрации.
Рекомендуем скачать другие рефераты по теме: бесплатные конспекты, рассказы скачать.