Компьютерное оборудование(hard)
Категория реферата: Рефераты по информатике, программированию
Теги реферата: решебник 11 класс, реферат инструменты
Добавил(а) на сайт: Dudnik.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Б) DDR SDRAM(Double Date Rate Synchronous Dynamic Access Memory).
3. RIMM(Rambus inline memory module) – 168-контактный модуль памяти
RDRAM повышенной (1,6 Гбайт/с) пропускной способности
(используя 16-битную шину, эта память передает информацию по обоим фронтам тактового импульса, то есть фактически удваивает частоту работы).
Память в ПК сгруппирована в банки памяти. Так называют минимальный блок
памяти, с которым компьютер становится работоспособным. Наращивают ОЗУ, полностью заполняя отдельные банки памяти.
Модули DIMM обычно строятся на базе микросхем синхронной динамической
памяти (SDRAM). Синхронная память требует подачи тактовых импульсов с ма-
теринской платы, поэтому длительность всех операций задается тактами шины
памяти. Процессор выставляет адрес памяти и может переключаться на другую
задачу. Это дает некоторое повышение производительности.
Память SDRAM характеризируется периодом тактовых импульсов (или часто-
той) тактовых импульсов. Если системная плата имеет тактовую частоту менее
100 МГц, то для нее подойдут модули SDRAM c периодом тактовых импульсов 10
наносекунд. Для широко распространенных модулей спецификации PC100 и PC133
этот параметр – 10 и 7 нс. Рабочая частота модулей памяти, отвечающих
спецификациям PC100 и PC133, увеличена соответственно до 100 и 133 МГц, что
обеспечивает пропускную способность 0,8 Гбайт/с и 1,064 Мбайт/с.
Память DDR SDRAM работает вдвое быстрее обычной SDRAM за счет обра-
ботки информации как по фронту, так и по срезу тактового сигнала. Модули
DDR SDRAM устанавливаются в специальные слоты на материнской плате типа
DIMM. Пропускная способность DDR памяти может составлять 2,1 Гбайт/с при
частоте 266 МГц и 1,6 Гбайт/с при частоте 200 МГц.
Чипсеты – наборы микросхем.
Желая приобрести материнскую плату, прежде всего интересуются ее электри-
ческими характеристиками и конструктивными особенностями. Электрические
характеристики определяются набором управляемых микросхем – чипсетами.
Конструктивные особенности плат характеризуются форм-фактором.
Одним из крупнейших разработчиков и производителей чипсетов является
Intel.Появление процессоров Pentium стимулировало разработку новых чипсетов
Для Pentium-60 предназначался чипсет Mercury(1993 г.), ныне ушедший в исто-
рию, за ним следовал 82430NX (Neptune, 1994 г.). По своим характеристикам
Neptune был ориентирован на профессиональные применения. Однако быстрое
развитие процессоров Pentium выявило потребность в чипсетах, ориентирован-
ных на массового потребителя.
В начале 1996 года корпорация пошла навстречу производителям компьютеров
и одновременно решила разделить рынки SOHO(Small Office/Home Office) и
корпоративных применений – миру были представлены новые наборы чипсетов:
82430VX и 82430HX. В наборе 82430HX реализована поддержка многопроцес-
сорных систем, памяти с исправлением единичной ошибки(ЕСС), улучшены
характеристики взаимодействия процессора с кэш-памятью – все это важно для
построения серверов и профессиональных рабочих станций. В наборе 82430VX
эти функции отсутствовали, зато он получился дешевле.
Однако вскоре 82430VX начал отставать от темпов появления большего числа
новинок, ориентированных на рынок мультимедийных машин. В результате ему на
смену пришел набор 82430TX, который был разработан прежде всего для
повышения производительности мультимедийных компьютеров с процессорами
Pentium MMX.
Затем пришла эпоха процессоров с разъемами Slot 1 и Socket 370. Основные
чипсеты для них – это ныне устаревающий Intel 440BX, новомодный Intel 820 и
альтернативный VIA Apollo Pro133A.
Чипсет i440BX был первым чипсетом, имеющим 100-мегагерцовую системную
шину. Но многие современные возможности чипсет не поддерживает. Так, основной проблемой, связанной с его применением, является отсутствие
поддержки частоты FSB 133 МГц. В качестве замены i440BX компания Intel вы-
пустила чипсет i820, построенный на новой основе. Поскольку i820 изначально
разрабатывался под процессоры с ядром Coppermine, вполне естественно, что
им поддерживается 133-мегагерцовая процессорная шина. Также в i820 введена
поддержка режима AGP 4x, обеспечивающего вдвое более высокую скорость
передачи данных по шине AGP (1056 Гбайт/с). Незабытым остался и протокол
UltraDMA/66.
Таким образом в i820 реализован широкий перечень возможностей. С одним
«но». Это «но» - поддерживаемая память. При разработке чипсета основной
упор был сделан на память RDRAM. Обмен данными в RDRAM идет по обоим
фронтам сигнала (с удвоенной частотой). Результата таков – память в i820
рабо-
тает на частоте 400 МГц, частота передачи данных составляет 800 МГц. В
итоге пропускная способность шины памяти составляет (при 16-разрядной шине
данных) 1,6 Гбайт/с (800 Мбайт/с для PC100 SDRAM). Но структура RDRAM та
кова, что время доступа здесь примерно вдвое больше, чем для SDRAM. Плюс
дорогая цена RDRAM.
Такое положение дел с ценой и доступностью RDRAM заставило Intel искать
выход. Поскольку поддержка SDRAM в i820 предусмотрена не была, компания
разработала специальный контролер-конвертор обращений по каналу
Rambus(архитектура RDRAM) к памяти SDRAM – MTH(Memory Translator Hub)
Его устанавливают на системную плату. Однако этот контролер, называемый
хабом, поддерживает только PC100 SDRAM, то есть независимо от частоты сис-
темной шины память работает всегда на частоте 100МГц. Плюс к этому трансля
ция запросов, выполняемая MTH, также требует времени. Все это приводит к
драматически низкой скорости работы i820 c SDRAM. Именно такое решение –
использование i820 «с хабом» и памятью типа PC100 SDRAM и предлагает
сейчас Intel как основное.
Типоразмеры(форм-фактор)
Имеются четыре основные типоразмера материнских плат – АТ (baby AT), ATX,
LPX и NLX. Производство AT (карта была неудобная в обслуживании), LPX не
получил большего распространения из-за малого количества слотов на плате, а
вот самым популярным на сегодняшний день являются материнские платы форм-
фактора ATX. Рассмотрим ее поподробнее:
1. На плате интегрированы разъемы портов ввода-вывода. Если контроллеры портов ввода-вывода монтируют непосредственно на системных платах, вполне естественным выглядит решение расположить на них и разъемы портов. Это заметно уменьшает количество соединительных проводов внутри корпуса.
2. Стали доступнее гнезда модулей памяти. Они переехали дальше от слотов плат расширения, от процессора и блока питания.
3. Уменьшилось расстояние между платой и дисководом. Разъемы контроллеров IDE и FDD переместились практически вплотную к подсоединяемым к ним устройствам.
4. Слоты процессора и плат расширения разнесены. Гнездо процессора перенесено с передней части платы на заднюю, ближе к блоку питания.
Это позволяет устанавливать в слоты полноразмерные платы – процессор им не мешает.
5. Напряжение питания 3,3 В, весьма широко используемое современными компонентами системы, подводится от блока питания. В АТ-платах для его получения требовался преобразователь, устанавливаемый на материнской плате. В АТХ-платах необходимость в нем отпала.
Жесткие диски (HDD)
Типичный дисковод жестких дисков состоит из гермоблока и платы электрони-
ки. В гермоблоке размещены все механические части, на плате вся управляющая
электроника. В гермоблоке установлен шпиндель с одним или несколькими дис- ками («блинами»). Диски изготовлены из алюминия и покрыты тонким слоем окиси хрома. Сбоку шпинделя находится поворотный позиционер(подобен крану со стрелой-коромыслом). С одной стороны коромысла располодены обращенные к дискам легкие магнитные головки, а с другой – короткий хвостик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферий дисков. Под «блинами» расположен двигатель, который вращает их с большой скоростью. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока. Пыль губительна для поверхности дисков, поэтому блок герметизирован, воздух в нем постоянно очищается фильтром. Для вырав- нивания давления воздуха внутри и снаружи в крышках гермоблоков делаются небольшие окна, заклеенные тонкой пленкой.
Обмотку позиционера окружает статор, представляющий собой постоянный
магнит. При подачи в обмотку тока определенной величины и полярности
коромысло начинает поворачиваться в соответствующую сторону с соответству
ющим ускорением. Динамически изменяя ток в обмотке, можно устанавливать
позиционер в любое положение.
При вращении дисков аэродинамическая сила поддерживает головки на неболь
шом расстоянии от поверхности дисков. Головки никогда не соприкасаются с
той зоной поверхности диска, где записаны данные. На хвостике позиционера
обычно располодена так называемая магнитная защелка – маленький постоян-
ный магнит, который при крайнем внутреннем положении головок притягивает-
ся к поверхности статора и фиксирует коромысло в этом положении. Это так на-
зываемое парковочное положение головок, которые при этом лежат на
поверхности диска, соприкасаясь с нею. В посадочной зоне дисков информация
не записывается.
К гермоблоку через специальные разъемы подключается съемная плата электро
ники. На плате расположены основной процессор винчестера, ПЗУ с програм-
мой, рабочее ОЗУ, которое обычно используется в качестве дискового буфера, цифровой сигнальный процессор (DSP) для подготовки записываемых и обработ
ки считанных сигналов и интерфейсная логика.
Подключение
Современные материнские платы имеют встроенный адаптер IDE, содержащий два
канала, к каждому из которых можно подключить два IDE-устройства. Одно из
устройств должно быть сконфигурировано при помощи контактных перемычек
(джамперов) как «master» (ведущее), а другое – как «slave»(ведомое). Как
установить перемычки, обычно показано на рисунках на корпусе «харда» или в
технической документации.
IDE-устройства другого типа (CD-ROM,ZIP и др.) лучше подключать ко
второму IDE-каналу.
Современные BIOS по умолчанию сами определяют наличие и свойства IDE-
дисководов, однако иногда случается, что функция автоопределения не
срабаты
вает. В этом случае параметры дисковода вводят вручную.
Содержание:
1. Процессоры стр. 1
Pentium II стр. 1
Pentium III стр. 2
Pentium IV стр. 2
Рекомендуем скачать другие рефераты по теме: инновационный менеджмент, взаимодействие реферат.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата