Разработка системы теплоснабжения
Категория реферата: Рефераты по информатике, программированию
Теги реферата: изложение 8 класс русский язык, тесты с ответами
Добавил(а) на сайт: Jemskih.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата
Система команд AVR весьма развита и насчитывает 89 различных инструкций. Почти все команды имеют фиксированную длину в одно слово (16 бит), что позволяет в большинстве случаев объединять в одной команде и код операции, и операнд(ы). Различают пять групп команд AVR: условного ветвления, безусловного ветвления, арифметические и логические операции, команды пересылки данных, команды работы с битами. По разнообразию и количеству реализованных инструкций AVR больше похожи на CISC, чем на RISC процессоры. Например, у PIC-контроллеров система команд насчитывает от 33 до 58 различных инструкций, а у MCS51 она составляет 111.
В целом, архитектура AVR в сочетании с регистровым файлом и расширенной системой команд позволяет в короткие сроки создавать программы с очень эффективным кодом как по скорости его выполнения, так и по компактности.
Наше краткое знакомство с новым микроконтроллерным семейством было бы неполным, если не упомянуть о имеющихся средствах поддержки разработок для AVR. Программные и аппаратные средства для новой платформы разрабатывались параллельно с самими микроконтроллерами и включают в себя компиляторы, внутрисхемные эмуляторы, отладчики, программаторы, простейшие отладочные платы-конструкторы практически на любой вкус.
Подводя итог всему вышесказанному, хочется верить, что я как разработчик привел убедительные доводы в пользу выбранной мной элементной базы. Многие отечественные специалисты уже по достоинству оценили высокую скорость работы и мощную систему команд AVR, наличие двух типов энергонезависимой памяти на одном кристалле и развивающуюся периферию. Немаловажную роль в этом сыграла и открытая политика Atmel в вопросе развития разнообразных, доступных средств поддержки разработок. Это позволяет разработчикам и производителям электронной техники надеяться на сохранение полноценной поддержки для перспективной линии AVR и в будущем, закладывая микроконтроллеры семейства AT90S в свои новые изделия. В сочетании со всеми аппаратными и программными достоинствами низкая цена на микроконтроллер явилась решающим фактором в выборе оного.
3.2. Разработка принципиальной схемы контроллера
Плата контроллера состоит из 2 разъемов, 5 микросхем MAX 232 (DD1..DD5) - микросхем преобразования сигналов ТТЛ уровня в сигналы уровня интерфейса RS-232 и наоборот и микроконтроллера AT90S1200 (DD6).
Сигналы с модема поступают на разъем Х1 контроллера. После этого они поступают на одну из микросхем преобразования сигналов ТТЛ уровня в сигналы уровня интерфейса RS-232, а потом на микроконтроллер DD6, где проходят дальнейшую обработку. В зависимости от того какая команда придет в микроконтроллер DD6, может быть произведена либо запись, либо чтение по заданному адресу. Тоже самое происходит и со стороны тепловычислителя: микроконтроллер обменивается командами с тепловычислителем через одну из микросхем DD4..DD5, т.к. тепловычислитель сопрягается с другими устройствами по интерфейсу RS-232, а микроконтроллер работает с сигналами ТТЛ уровня.
К микроконтроллеру также приходят сигналы от датчиков пожара, затопления и от охранного датчика. По сигналам от этих датчиков происходит автоматический дозвон до диспетчерского пункта и выдается соответствующее сообщение на дисплей диспетчеру, который должен предпринять меры по устранению причин, вызвавших этот сигнал.
3.3. Проектирование печатной платы контроллера
3.3.1. Определение общих требований к печатной плате
По конструкции печатные платы (ПП) делятся на следующие типы: односторонние (ОПП), двусторонние (ДПП) и многослойные (МПП). При выборе типа ПП для разрабатываемой конструкции следует учитывать технико-экономические показатели.
ОПП представляют собой диэлектрическое основание с отверстиями, пазами, вырезами и т. п., на одной стороне которого выполнен проводящий рисунок, а на другой при сборке размещают интегральные микросхемы (ИМС) и электрорадиоэлементы (ЭР-Э).
В связи с ограниченной площадью для трассировки рисунка схемы такие ПП применяют для простых электронных устройств бытового и вспомогательного назначения. Наиболее просты по конструкции и дешевы в изготовлении ОПП без металлизированных отверстий. Более сложны, но и более надежны в эксплуатации платы с металлизированными с помощью пистонов отверстиями.
ДПП имеют проводящий рисунок на обеих сторонах диэлектрического основания. Необходимые соединения печатных проводников разных сторон ДПП выполняют с помощью проволочных перемычек, металлизированных отверстий, контактных площадок. Такие платы позволяют реализовать более сложные схемы и имеют наиболее широкое применение при изготовлении узлов электронных схем. Менее распространенные ДПП на металлическом основании с нанесенным на него электроизоляционным покрытием имеют лучший теплоотвод, что существенно при большой мощности навесных элементов.
МПП состоят из чередующихся слоев изоляционного материала и проводящего рисунка. Между проводящими слоями в структуре плат могут быть или отсутствовать межслойные соединения. Существует достаточно большое разнообразие конструктивно-технологических разновидностей МПП в зависимости от наличия и характера межслойных соединений. Наибольшее распространение среди них получили МПП с металлизацией сквозных отверстий, которые не имеют ограничения на число слоев (оптимальное число до 12) и пригодны для установки элементов как со штыревыми, так и с планарными выводами. Предпочтительность использования МПП этого типа обусловлена сравнительно высокой плотностью монтажа, хорошим качеством межслойных соединений, удовлетворительной ремонтоспособностью, возможностью автоматизации и механизации как процессов изготовления самих плат, так и сборки на них узлов.
В зависимости от сложности реализуемой электрической схемы и применяемой элементной базы выбирают конструктивное исполнение платы, число слоев и плотность проводящего рисунка схемы. При выборе числа слоев платы следует иметь в виду, что наименее трудоемки и просты в изготовлении ОПП без металлизированных отверстий и приблизительно равны по затратам ОПП и ДПП о металлизированными отверстиями. Наиболее сложны и трудоемки в изготовлении МПП, число слоев которых ограничено предельно допустимым соотношением между диаметром металлизированных отверстий и толщиной платы (не менее 0,33). Ориентировочно соотношение трудоемкости изготовления ОПП без металлизированных отверстий, ДПП и МПП составляет 1:4:20.
По точности выполнения элементов (согласно ГОСТ 23751 - 86) конструкции ПП делятся на пять классов. Класс точности указывают на чертеже ПП.
Под элементами конструкции ПП подразумеваются элементы проводящего рисунка.
Печатные платы 1-го и 2-го классов точности наиболее просты в исполнении, надежны в эксплуатации и имеют минимальную стоимость. Печатные платы 3-го, 4-го и 5-го классов точности требуют использования высококачественных материалов, инструмента и оборудования, ограничения габаритных размерен, а в отдельных случаях и особых условий при изготовлении.
Габаритные размеры ПП должны соответствовать ГОСТ 10317 - 79. Размеры каждой стороны ПП должны быть кратными:
– 2,5 мм - при длине до 100 мм;
– 5,0 мм - при длине до 350 мм;
– 10,0 мм - при длине более 350 мм.
Рекомендуется разрабатывать ПП простой прямоугольной формы. Конфигурацию, отличную от прямоугольной, следует применять только в технически обоснованных случаях.
Соотношение линейных размеров сторон ПП должно быть не более 3:1. Допускается увеличение этого соотношения по согласованию с заказчиком.
Согласно ОСТ 25.931 - 80 рекомендуются размеры ПП на вновь разрабатываемые и модернизируемые изделия. Максимальные размеры ПП и (или) рабочего поля групповой установки должны быть не более 470 мм. Допуски на линейные размеры сторон ПП должны соответствовать ГОСТ 25346 - 82 и ГОСТ 25347 - 82. Сопрягаемые размеры контура ПП должны иметь предельные отклонения по 12 квалитету. Несопрягаемые размеры контура - по 14 квалитету согласно ГОСТ 25347 - 82 (СТ СЭВ 145 - 75).
Толщина печатной платы определяется толщиной исходного материала и выбирается в зависимости от используемой элементной базы и действующих механических нагрузок. Предпочтительными значениями номинальных толщин одно- и двусторонних печатных плат являются 0,8; 1,0; 1,5; 2,0 мм.
Фольгированные материалы представляют собой слоистые прессованные пластинки, изготовленные на основе бумаги (гетинакс) или ткани из стеклянного волокна (стеклотекстолит), пропитанные термореактивными связующими и облицованные с одной или двух сторон медной электролитической фольгой, которая оксидирована с внутренней стороны для материалов обычного исполнения или покрыта пленкой хрома для гальваностойких материалов.
Материал для печатной платы выбирают по ГОСТ 10316 - 78 или техническим условиям. Обозначения марок, например, СФ-1(2)-35 означают, что промышленностью выпускаются как односторонние СФ-1-35, так и двусторонние СФ-2-35 фольгированные материалы с указанными толщинами фольги и материала с фольгой. Буквы Н и Г в обозначении марки материала свидетельствуют о повышенной нагревостойкости (до +100°С) и гальваностойкости.
Фольгированные материалы предназначены для работы в следующих условиях:
– гетинакс без дополнительной влагозащиты предназначен для изготовления ПП, на которые в процессе работы может воздействовать окружающая среда, характеризующаяся относительной влажностью воздуха 45 - 75% при температуре 15 - 35°С;
– гетинакс с дополнительной влагозащитой и стеклотекстолит всех марок предназначены для изготовления ПП, на которые в процессе работы может воздействовать окружающая среда, характеризующаяся относительной влажностью воздуха до 98% при температуре не выше 40°С;
– фольгированные материалы в виде ПП должны допускать воздействие температуры до 60°С. Фольгированные материалы изготавливаются листами следующих номинальных размеров:
– гетинакс всех марок и толщин - 2440х1040; 1190х1040, 800х900 мм;
– стеклотекстолит всех марок и толщин - 1190х1010, 1010х890, 1010х840, 910х890, 640х490.
Условные обозначения фольгированных материалов - по ГОСТ 26246 - 84. Для материалов высшего и первого сортов дополнительно должно быть указано “в.с.” или “1с.”. Пример условного обозначения фольгированного стеклотекстолита высшего сорта толщиной 1,5 мм, облицованного с двух сторон медной электролитической гальваностойкой фольгой толщиной 35 мкм: СФ-2-35Г-1,5 в. с. ГОСТ 10316—78.
Для ПП, предназначенных для эксплуатации в условиях первой группы жесткости по ОСТ 4.077.000 (табл. 6), рекомендуется применять материалы на основе бумаги, для второй, третьей и четвертой групп жесткости — на основе стеклоткани.
3.3.2. Методы изготовления печатных плат
Известно большое количество технологических вариантов изготовления печатных плат. Наиболее широкое распространение получили следующие методы:
– химический метод. Заключается в том, что на медную фольгу, приклеенную к диэлектрику с одной или с двух сторон, наносят кислотостойкой краской рисунок расположения печатных проводников. Последующим травлением удаляется медь с незащищенных участков и на диэлектрике остается схема проводников.
Наиболее распространенными вариантами этого способа являются фотохимический, сетчато-химический, офсетно-химический, которые различаются способом нанесения защитного слоя.
Достоинства этого метода: достаточная простота, легко поддается автоматизации. Недостатки: необходимость применения металлических втулок при двустороннем монтаже и непроизводительный расход меди.
– электрохимический метод. Заключается в нанесении на плату кислотостойкой краской негативного рисунка проводников. Нанесение рисунка происходит с последующим наращиванием слоя меди.
Основное преимущество электрохимического метода заключается в возможности металлизации отверстий одновременно с получением проводников. Недостатком является низкая рассеивающая способность (0,5 ¸ 0,8 мм) и низкая прочность сцепления проводников с основанием.
Электрохимический метод находит применение главным образом в опытном и мелкосерийном производстве при изготовлении двусторонних плат с большим числом переходов.
– комбинированный метод. Заключается в получении проводников путем травления фольгированного диэлектрика и металлизацией отверстий электрохимическим способом. Сущность метода травления фольгированного материала с последующим вытравливанием фольги с отдельных участков платы. Этот метод обеспечивает получение четких линий проводников печатной схемы. Он характеризуется меньшей трудоемкостью по сравнению с электрохимическим методом. Печатные платы более надежны, так как при этом диэлектрик находится в более благоприятном условии, потому что фольга предохраняет его от действия электролита.
Комбинированный метод широко применяется при изготовлении двухсторонних печатных плат.
После механической обработки плата проверяется на наличие трещин на краях платы и в отверстиях, отслоения печатных проводников в зоне отверстий. Печатные проводники должны быть четкими. Целостность электрических цепей устанавливается методом прозвонки.
Детали на плату устанавливают вручную, пайку монтажных соединений выполняют паяльником мощностью 35Вт припоем ПОС - 60. Применяют только бескислотные флюсы. Качество пайки проверяют внешним осмотром.
Рекомендуем скачать другие рефераты по теме: время реферат, переплет диплома.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 | Следующая страница реферата