Шпаргалки по криптографии
Категория реферата: Рефераты по информатике, программированию
Теги реферата: гражданское право реферат, реферат на тему человек
Добавил(а) на сайт: Веселовский.
Предыдущая страница реферата | 19 20 21 22 23 24 25 26 27 28 29 | Следующая страница реферата
"Электронная цифровая печать", так как подпись - это нечто
индивидуальное. А печать (как и секретный ключ) можно
украсть, со всеми вытекающими.
RSA.
ПРЕДВАРИТЕЛЬHО:
- те же предварительные действия что и для криптосистемы RSA.
ВЫЧИСЛЕHИЕ ПОДПИСИ:
- c = H(m)^d (mod n) (H(m) - результат хэширования сообщения m);
ПРОВЕРКА ПОДПИСИ:
- проверка равества H(m) == c^e (mod n).
('==' - операция сравнения (это не больше или меньше :-)))
Авторы: Рональд Райвест (R. Rivest), Ади Шамир (A. Shamir)
и Леонард Аделман (L. Adleman)
Размеры ключей: любые, размер модуля выбирается обычно не менее
2048 бит (соответственно сумма длин e и d примерно равна длине n)
Размер подписи: Равен длине модуля.
ElGamal
ПРЕДВАРИТЕЛЬHО:
1. Во всей сети выбираются простое число p, p=2q+1, q - простое число и Alfa -
образующая поля GF(p).
При специальном выборе параметров p и Alfa становится возможным подделывать
подписи. Это доказывается в [3.4.2].
Этот факт может быть использован, если параметры системы порождаются
централизованно. Тогда тот, кто их порождает, может подделывать подписи всех
обслуживаемых им участников.
2. Во всей сети выбирается хэш-функция H со значениями в поле GF(p)
3. Абонент случайным образом генерирует свой секретный ключ x из интервала
{2,...,p-1}, который сохраняет в тайне.
4. Абонент вычисляет свой открытый ключ y=Alfa^x (mod p), который рассылает
своим корреспондентам.
ВЫЧИСЛЕHИЕ ПОДПИСИ:
1. Абонент выбирает случайное число k {1,...,p-1}, взаимно простое с p-1
2. Абонент вычисляет r=Alfa^k (mod p)
3. Абонент вычисляет s=(1/k)*(H(m)-rx) (mod (p-1)), где H(m) - хэш-функция
от подписываемого сообщения.
4. Абонент уничтожает k.
5. Абонент посылает свое сообщение m вместе с подписью (r,s).
ПРОВЕРКА ПОДПИСИ:
1. Корреспондент проверяет r и s принадлежат {1,...,p-1}
2. Корреспондент проверяет сравнение Alfa^H(m) == (y^r)*(r^s) (mod p)
Если хотя бы одно из условий проверки не выполнено, то считается что
подпись неверна.
Автор: El Gamal
Размеры ключей: зависят от реализации
Размер подписи: подпись состоит из двух чисел, каждое из которых имеет длину,
равную длине секретного элемента
DSS
Стандарт США DSS (Digital Signature Standard) [3.4.3] является развитием
схемы Эль Гамаля, но при той же надежности в смысле дискретного логарифма
требует возведения в меньшую степень.
Рекомендуем скачать другие рефераты по теме: ответы 5 класс, реферат теория.
Предыдущая страница реферата | 19 20 21 22 23 24 25 26 27 28 29 | Следующая страница реферата