Сравнительные характеристики современных аппаратных платформ
Категория реферата: Рефераты по информатике, программированию
Теги реферата: титульный реферата, налоги в россии
Добавил(а) на сайт: Шуличенко.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата
Очередь целочисленных команд содержит 16 строк и выдает команды в два арифметико-логических устройства. Целочисленные команды поступают в свободные строки этой очереди, причем в каждом такте в нее могут записываться до 4 команд. Целочисленные команды остаются в очереди до тех пор, пока они не будут выданы в одно из АЛУ.
Очередь команд плавающей точки
Очередь команд плавающей точки также содержит 16 строк и выдает команды в исполнительные устройства сложения и умножения с плавающей точкой. Команды плавающей точки поступают в свободные строки очереди, причем в каждом такте в нее могут записываться до 4 команд. Команды остаются в очереди до тех пор, пока они не будут выданы в одно из исполнительных устройств. Очередь команд плавающей точки содержит также логику управления команд типа "умножить-сложить". Эта команда сначала направляется в устройство умножения, а затем прямо в устройство сложения.
Адресная очередь
Очередь адресных команд выдает команды в устройство загрузки/записи и содержит 16 строк. Очередь организована в виде циклического буфера FIFO (first-in first-out). Команды могут выдаваться в произвольном порядке, но должны записываться в очередь и изыматься из нее строго последовательно. В каждом такте в очередь могут поступать до 4 команд. Буфер FIFO поддерживает первоначальную последовательность команд, что упрощает обнаружение зависимостей по адресам. Выполнение выданной команды может не закончиться при обнаружении зависимости по адресам, кэш-промаха или конфликта по ресурсам. В этих случаях адресная очередь должна заново повторять выдачу команды до тех пор, пока ее выполнение не завершится.
Переименование регистров
Одним из аппаратных методов минимизации конфликтов по данным является метод переименования регистров (register renaming). Он получил свое название от широко применяющегося в компиляторах метода переименования - метода размещения данных, способствующего сокращению числа зависимостей и тем самым увеличению производительности при отображении необходимых исходной программе объектов (например, переменных) на аппаратные ресурсы (например, ячейки памяти и регистры).
При аппаратной реализации метода переименования регистров выделяются логические регистры, обращение к которым выполняется с помощью соответствующих полей команды, и физические регистры, которые размещаются в аппаратном регистровом файле процессора. Номера логических регистров динамически отображаются на номера физических регистров посредством таблиц отображения, которые обновляются после декодирования каждой команды. Каждый новый результат записывается в новый физический регистр. Однако предыдущее значение каждого логического регистра сохраняется и может быть восстановлено в случае, если выполнение команды должно быть прервано из-за возникновения исключительной ситуации или неправильного предсказания направления условного перехода.
В процессе выполнения программы генерируется множество временных регистровых результатов. Эти временные значения записываются в регистровые файлы вместе с постоянными значениями. Временное значение становится новым постоянным значением, когда завершается выполнение команды (фиксируется ее результат). В свою очередь, завершение выполнения команды происходит когда все предыдущие команды успешно завершились в заданном программой порядке. Программист (или компилятор) имеет дело только с логическими регистрами. Реализация физических регистров от него скрыта.
Таким образом, аппаратный метод переименования регистров, используемый в процессоре R10000, имеет три основных достоинства. Во-первых, результаты "выполняемых по предположению" команд могут прямо записываться в регистровый файл. Во-вторых, этот метод устраняет все конфликты типа "запись после чтения" и "запись после записи", которые часто возникают при неупорядоченном выполнении команд. И, наконец, метод переименования регистров упрощает контроль зависимостей по данным. Поскольку процессор обеспечивает выдачу для выполнения до четырех команд в каждом такте, в процессе переименования регистров их логические номера сравниваются для определения зависимостей между четырьмя командами, декодированными в одном и том же такте.
Реализованная в микропроцессоре R10000 схема отображения команд состоит из двух таблиц отображения, списка активных команд и двух списков свободных регистров (для целочисленных команд и команд плавающей точки имеются отдельные таблицы отображения и списки свободных регистров). Чтобы поддерживать последовательный порядок завершения выполнения команд, существует только один список активных команд, который содержит как целочисленные команды, так и команды плавающей точки.
Микропроцессор R10000 содержит по 64 физических регистра (целочисленных и плавающей точки). В любой момент времени значение физического регистра содержится в одном из указанных выше списков. На рисунке 6.14 показана упрощенная блок-схема отображения целочисленных команд.
Рис. 6.14. Упрощенная блок-схема отображения целочисленных команд
Команды выбираются из кэша команд и помещаются в таблицу отображения. В любой момент времени каждый из 64 номеров физических регистров находится в одном из трех указанных на рисунке блоков.
Список активных команд длиною 32 элемента может хранить упорядоченную в соответствии с программой последовательность команд, которые могут находиться в обработке в любой данный момент времени. Команды из очереди целочисленных команд могут выполняться неупорядочено и записывать результаты в физические регистры, но порядок их окончательного завершения определяется списком активных команд.
Каждая команда может уникально идентифицироваться своим положением в списке активных команд. Поэтому каждую команду в очереди и в соответствующем исполнительном устройстве сопровождает 5-битовая метка, называемая тегом команды. Этот тег и определяет положение команды в списке активных команд. Когда в исполнительном устройстве заканчивается выполнение команды, тег позволяет очень просто ее отыскать в списке активных команд и пометить как выполненную. Когда результат операции из исполнительного устройства записывается в физический регистр, номер этого физического регистра становится больше не нужным и может быть затем возвращен в список свободных регистров, а соответствующая команда перестает быть активной.
Когда в процессе переименования из списка свободных регистров выбирается очередной номер физического регистра, он передается в таблицу отображения, которая обновляется. При этом старый номер регистра, соответствующий определенному в команде логическому регистру результата, помещается из таблицы отображения в список активных команд. Этот номер остается в списке активных команд до тех пор, пока соответствующая команда не "выпустится" (graduate), т.е. завершится в заданном программой порядке. Команда может "выпуститься" только после того, как успешно завершится выполнение всех предыдущих команд.
Микропроцессор R10000 содержит 64 физических и 32 логических целочисленных регистра. Список активных команд может содержать максимально 32 элемента. Список свободных регистров также может максимально содержать 32 значения. Если список активных команд полон, то могут быть 32 "зафиксированных" и 32 временных значения. Отсюда потребность в 64 регистрах.
Исполнительные устройства
В процессоре R10000 имеются пять полностью независимых исполнительных устройств: два целочисленных АЛУ, два основных устройства плавающей точки с двумя вторичными устройствами плавающей точки, которые работают с длинными операциями деления и вычисления квадратного корня, а также устройство загрузки/записи.
Целочисленные АЛУ
В микропроцессоре R10000 имеются два целочисленных АЛУ: АЛУ1 и АЛУ2. Время выполнения всех целочисленных операций АЛУ (за исключением операций умножения и деления) и частота повторений составляют один такт.
Оба АЛУ выполняют стандартные операции сложения, вычитания и логические операции. Эти операции завершаются за один такт. АЛУ1 обрабатывает все команды перехода, а также операции сдвига, а АЛУ2 - все операции умножения и деления с использованием итерационных алгоритмов. Целочисленные операции умножения и деления помещают свои результаты в регистры EntryHi и EntryLo.
Во время выполнения операций умножения в АЛУ2 могут выполняться другие однотактные команды, но сам умножитель оказывается занятым. Однако когда умножитель заканчивает свою работу, АЛУ2 оказывается занятым на два такта, чтобы обеспечить запись результата в два регистра. Во время выполнения операций деления, которые имеют очень большую задержку, АЛУ2 занято на все время выполнения операции.
Целочисленные операции умножения вырабатывают произведение с двойной точностью. Для операций с одинарной точностью происходит распространение знака результата до 64 бит прежде, чем он будет помещен в регистры EntryHi и EntryLo. Время выполнения операций с двойной точностью примерно в два раза превосходит время выполнения операций с одинарной точностью.
Рекомендуем скачать другие рефераты по теме: реферат на тему понятие, диплом 2011.
Предыдущая страница реферата | 3 4 5 6 7 8 9 10 11 12 13 | Следующая страница реферата