Технология вейвлетов
Категория реферата: Рефераты по информатике, программированию
Теги реферата: контрольные 9 класс, понятие культуры
Добавил(а) на сайт: Ульяна.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Вейвлеты непосредственно связаны с кратномасштабным анализом
сигналов. Вейвлеты могут быть ортогональными, полуортогональными, биортогональными. Эти функции могут быть симметричными, асимметричными и
несимметричными. Различают вейвлеты с компактной областью определения и не
имеющие таковой. Некоторые функции имеют аналитическое выражение, другие –
быстрый алгоритм вычисления связанного с ними вейвлет. Вейвлеты различаются
также степенью гладкости. Для практики желательно было бы иметь
ортогональные симметричные (асимметричные) вейвлеты. К сожалению, доказана
теорема о том, что такими вейвлетами являются лишь вейвлеты Хаара. Функции
Хаара не обладают достаточной гладкостью и не подходят для большинства
приложений, поэтому для кодирования изображений обычно используют
биортогональные вейвлеты.
В настоящее время многие исследователи понимают под вейвлетами более
широкий класс функций. Это и вейвлет - локальные тригонометрические базисы
(вейвлеты Малвара), и мультивейвлеты, и так называемые вейвлеты второго
поколения, не являющиеся сдвигами и растяжениями одной функции. Базисы
преобразования Фурье не являются вейвлетами, так как у них отсутствует
локализация в пространстве (времени).
Российские математики вейвлеты иногда называют всплесками. На наш взгляд, этот термин является неудачным, а попытка русификации терминологии может ввести в заблуждение и порождать ошибки.
Некоторым может показаться, что вейвлеты не являются чем -
фундаментально новым. В самом деле, сходные идеи появлялись на протяжении
последних десятилетий: субполосное кодирование, успешно применяемое при
кодировании речи, пирамидальные схемы кодирования изображений, преобразование и функции Габора (вейвлеты Габора). С развитием теории
вейвлетов произошло как бы объединение, взаимопроникновение, взаимообогащение этих идей, что привело к качественно новому результату.
Так как с точки зрения практики наиболее интересными представляются быстрые
алгоритмы вычисления вейвлет
1. Зачем нужна видеокомпрессия?
Под видеокомпрессией обычно понимается сокращение объема памяти, необходимой для хранения цифровых видеоданных и передачи их по каналам связи. Цель видеокомпрессии - более компактное представление изображений.
Широко распространенные приложения мультимедиа (графика, аудио, видео) с каждым днем предъявляют все более высокие требования к аппаратной базе компьютера. Ни наращивание тактовой частоты процессора, ни увеличение объема жесткого диска, ни улучшение пропускной способности каналов передачи данных не в состоянии спасти положение. Единственным путем решения этой проблемы является разработка эффективных алгоритмов видеокомпрессии.
Задача написания новых программ видеосжатия чрезвычайно актуальна для создателей цифровых систем видеонаблюдения - ведь именно в этой области постоянно приходится обрабатывать и хранить большие объемы видеоданных. Но возникает вопрос: как изменится качество изображения после сжатия?
Алгоритмы сжатия - JPEG или Wavelet?
Наиболее важные теоретические результаты в цифровой компрессии видео были получены еще в конце 70-х. В частности, было установлено, что любое изображение содержит в себе избыточную информацию, не воспринимаемую человеческим глазом. Эта избыточность вызвана сильными корреляционными связями между элементами изображения - изменения от пикселя к пикселю в пределах некоторого участка кадра можно считать несущественными.
Также дело обстоит и с реальным видео - даже при съемке движущихся объектов различие между двумя соседними кадрами невелико.
Итак, перед алгоритмом видеокомпрессии стоит задача обнаружения и фильтрации избыточной информации. Как ее решить?
Наиболее распространенные до сегодняшнего времени методы сжатия, применяющиеся в стандартах JPEG и MJPEG, основаны на Фурье-преобразовании сигнала - он представляется в виде набора гармонических колебаний с различными частотами и амплитудами. Важно отметить, что и JPEG, и MJPEG, перед тем как обрабатывать изображение, делят его на блоки. Очень часто это приводит к снижению качества - изображение получается сильно дискретизованным, четко видна блочная структура.
В конце 80-х - начале 90-х годов был разработан новый стандарт, названный Wavelet-компрессией (в русскоязычной литературе используется термин "вейвлет").
В буквальном переводе с английского слово "wavelet" означает
"маленькая волна". Название это объясняется формой графиков функций, используемых в вейвлет-анализе.
Идеологически же понятия "вейвлет-анализ" и "Фурье-анализ" эквивалентны. И в том, и в другом случае реальный сигнал заменяется набором функций (как правило, в преобразовании Фурье используется система синусов и косинусов).
1.2. Требования, предъявляемые к преобразованиям
Рассмотрим свойства, которые являются важными при кодировании изображений.
1. Масштаб и ориентация. Для эффективного представления изображения важную роль играет масштаб. В изображениях имеются объекты самых различных размеров. Поэтому, преобразование должно позволять анализировать изображение одновременно (и независимо) на различных масштабах. Для двумерного сигнала некоторая спектральная область соответствует определенному масштабу и ориентации. Ориентация базисных функций определяет способность преобразования корректно анализировать ориентированные структуры, типичные для изображений. Примером могут служить контуры и линии. Таким образом, для решения задачи анализа желательно иметь преобразование, которое бы делило входной сигнал на локальные частотные области.
2. Пространственная локализация. Кроме частотной локализации, базисные функции должны быть локальными и в пространстве. Необходимость в пространственной локализации. Преобразования возникает тогда, когда информация о местоположении деталей изображения является важнейшей. Эта локальность, однако, не должна быть «абсолютной», блочной, как при ДКП, так как это ведет к потере свойства локальности в частотной области.
Наиболее часто применяемый подход при анализе заключается в следующем: сигнал дискретизируется, затем выполняется ДПФ. В результате сначала сигнал раскладывается по базису единичного импульса, который не имеет частотной локальности, а затем по базису синусоид с четными и нечетными фазами, не имеющих пространственной локальности. Конечно, представление сигнала в частотной области исключительно важно для его анализа. Однако это не означает, что выбор функций импульса и синусоиды для решения этой задачи является наилучшим. Еще в 1946 году Д.Габор предложил класс линейных преобразований, которые обеспечивают локальность и в частотной, и во временной области. Базис единичного импульса и базис синусоиды могут рассматриваться как два экстремальных случая этих преобразований. Вейвлеты являются еще одним примером функций, хорошо локализованных в пространственной и частотной областях.
3. Ортогональность. Преобразование не обязательно должно быть
ортогональным. Так, ортогональность обычно не рассматривается в контексте
субполосного кодирования, хотя вейвлет как правило, является ортогональным.
Ортогональность функций упрощает многие вычисления. Кроме того «сильно»
неортогональное преобразование может быть неприемлемо для кодирования.
4. Быстрые алгоритмы вычисления. Это, наверное, наиболее важное свойство. Так как невозможность практической реализации преобразования в реальном масштабе времени сводит на нет все его положительные свойства.
2. ПРИМЕНЕНИЕ ВЕЙВЛЕТ – ПРЕОБРАЗОВАНИЯ ДЛЯ СЖАТИЯ ИЗОБРАЖЕНИЯ
В последнее десятилетие в мире наблюдается значительный интерес к сжатию изображений. Это вызвано стремительным развитием вычислительной техники, графических мониторов, цветных принтеров, а также цифровой техники связи. Изображение представляется в цифровом виде достаточно большим количеством бит. Так, цветная картинка размером 512х512 требует для своего хранения 768 кБайт. Если передавать видеопоследовательность таких картинок со скоростью 25 кадров в секунду, требуемая скорость составит 188.7 Мбит / с.
Рекомендуем скачать другие рефераты по теме: реферат на тему война, правовые рефераты.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата